BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 33571936)

  • 21. Optogenetic actuation in ChR2-transduced fibroblasts alter excitation-contraction coupling and mechano-electric feedback in coupled cardiomyocytes: a computational modeling study.
    Zhan H; Wang Z; Lin J; Yu Y; Xia L
    Math Biosci Eng; 2021 Sep; 18(6):8354-8373. PubMed ID: 34814303
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Feasibility of Using Adjunctive Optogenetic Technologies in Cardiomyocyte Phenotyping - from the Single Cell to the Whole Heart.
    Bub G; Daniels MJ
    Curr Pharm Biotechnol; 2020; 21(9):752-764. PubMed ID: 30961485
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A micro-LED array based platform for spatio-temporal optogenetic control of various cardiac models.
    Junge S; Ricci Signorini ME; Al Masri M; Gülink J; Brüning H; Kasperek L; Szepes M; Bakar M; Gruh I; Heisterkamp A; Torres-Mapa ML
    Sci Rep; 2023 Nov; 13(1):19490. PubMed ID: 37945622
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optical Manipulation of Perfused Mouse Heart Expressing Channelrhodopsin-2 in Rhythm Control.
    Wang X; Cheng Y
    Methods Mol Biol; 2021; 2191():377-390. PubMed ID: 32865755
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Integration of Engineered "Spark-Cell" Spheroids for Optical Pacing of Cardiac Tissue.
    Chua CJ; Han JL; Li W; Liu W; Entcheva E
    Front Bioeng Biotechnol; 2021; 9():658594. PubMed ID: 34222210
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Adeno-Associated Virus Mediated Gene Delivery: Implications for Scalable
    Ambrosi CM; Sadananda G; Han JL; Entcheva E
    Front Physiol; 2019; 10():168. PubMed ID: 30890951
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sensing Cardiac Electrical Activity With a Cardiac Myocyte--Targeted Optogenetic Voltage Indicator.
    Chang Liao ML; de Boer TP; Mutoh H; Raad N; Richter C; Wagner E; Downie BR; Unsöld B; Arooj I; Streckfuss-Bömeke K; Döker S; Luther S; Guan K; Wagner S; Lehnart SE; Maier LS; Stühmer W; Wettwer E; van Veen T; Morlock MM; Knöpfel T; Zimmermann WH
    Circ Res; 2015 Aug; 117(5):401-12. PubMed ID: 26078285
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optogenetic targeting of cardiac myocytes and non-myocytes: Tools, challenges and utility.
    Johnston CM; Rog-Zielinska EA; Wülfers EM; Houwaart T; Siedlecka U; Naumann A; Nitschke R; Knöpfel T; Kohl P; Schneider-Warme F
    Prog Biophys Mol Biol; 2017 Nov; 130(Pt B):140-149. PubMed ID: 28919131
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stimulating cardiac muscle by light: cardiac optogenetics by cell delivery.
    Jia Z; Valiunas V; Lu Z; Bien H; Liu H; Wang HZ; Rosati B; Brink PR; Cohen IS; Entcheva E
    Circ Arrhythm Electrophysiol; 2011 Oct; 4(5):753-60. PubMed ID: 21828312
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Increasing the expression level of ChR2 enhances the optogenetic excitability of cochlear neurons.
    Meng X; Murali S; Cheng YF; Lu J; Hight AE; Kanumuri VV; Brown MC; Holt JR; Lee DJ; Edge ASB
    J Neurophysiol; 2019 Nov; 122(5):1962-1974. PubMed ID: 31533018
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optogenetic recruitment of spinal reflex pathways from large-diameter primary afferents in non-transgenic rats transduced with AAV9/Channelrhodopsin 2.
    Kubota S; Sidikejiang W; Kudo M; Inoue KI; Umeda T; Takada M; Seki K
    J Physiol; 2019 Oct; 597(19):5025-5040. PubMed ID: 31397900
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optogenetic current in myofibroblasts acutely alters electrophysiology and conduction of co-cultured cardiomyocytes.
    Kostecki GM; Shi Y; Chen CS; Reich DH; Entcheva E; Tung L
    Sci Rep; 2021 Feb; 11(1):4430. PubMed ID: 33627695
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Real-time electrochemical recording of dopamine release under optogenetic stimulation.
    Chiu WT; Lin CM; Tsai TC; Wu CW; Tsai CL; Lin SH; Chen JJ
    PLoS One; 2014; 9(2):e89293. PubMed ID: 24586667
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of a novel optogenetic indicator based on cellular deformations for mapping optogenetic activities.
    Li G; Yang J; Wang Y; Wang W; Liu L
    Nanoscale; 2018 Dec; 10(45):21046-21051. PubMed ID: 30276394
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Principles of Optogenetic Methods and Their Application to Cardiac Experimental Systems.
    Ferenczi EA; Tan X; Huang CL
    Front Physiol; 2019; 10():1096. PubMed ID: 31572204
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optogenetic Light Crafting Tools for the Control of Cardiac Arrhythmias.
    Richter C; Christoph J; Lehnart SE; Luther S
    Methods Mol Biol; 2016; 1408():293-302. PubMed ID: 26965131
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Real-time optical manipulation of cardiac conduction in intact hearts.
    Scardigli M; Müllenbroich C; Margoni E; Cannazzaro S; Crocini C; Ferrantini C; Coppini R; Yan P; Loew LM; Campione M; Bocchi L; Giulietti D; Cerbai E; Poggesi C; Bub G; Pavone FS; Sacconi L
    J Physiol; 2018 Sep; 596(17):3841-3858. PubMed ID: 29989169
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cardiac Optogenetics: Enhancement by All-trans-Retinal.
    Yu J; Chen K; Lucero RV; Ambrosi CM; Entcheva E
    Sci Rep; 2015 Nov; 5():16542. PubMed ID: 26568132
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optogenetic versus Electrical Stimulation of Human Cardiomyocytes: Modeling Insights.
    Williams JC; Entcheva E
    Biophys J; 2015 Apr; 108(8):1934-45. PubMed ID: 25902433
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Channelrhodopsin2 current during the action potential: "optical AP clamp" and approximation.
    Entcheva E; Williams JC
    Sci Rep; 2014 Jul; 4():5838. PubMed ID: 25060859
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.