These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 33571960)

  • 1. Restrictions in Ankle Dorsiflexion Range of Motion Alter Landing Kinematics But Not Movement Strategy When Fatigued.
    Howe L; S North J; Waldron M; Bampouras TM
    J Sport Rehabil; 2021 Feb; 30(6):911-919. PubMed ID: 33571960
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ankle dorsiflexion range of motion is associated with kinematic but not kinetic variables related to bilateral drop-landing performance at various drop heights.
    Howe LP; Bampouras TM; North J; Waldron M
    Hum Mov Sci; 2019 Apr; 64():320-328. PubMed ID: 30836206
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved Ankle Mobility After a 4-Week Training Program Affects Landing Mechanics: A Randomized Controlled Trial.
    Howe LP; Bampouras TM; North JS; Waldron M
    J Strength Cond Res; 2022 Jul; 36(7):1875-1883. PubMed ID: 32694287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Weight-Bearing Dorsiflexion Range of Motion and Landing Biomechanics in Individuals With Chronic Ankle Instability.
    Hoch MC; Farwell KE; Gaven SL; Weinhandl JT
    J Athl Train; 2015 Aug; 50(8):833-9. PubMed ID: 26067428
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ankle-dorsiflexion range of motion and landing biomechanics.
    Fong CM; Blackburn JT; Norcross MF; McGrath M; Padua DA
    J Athl Train; 2011; 46(1):5-10. PubMed ID: 21214345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Altered knee and ankle kinematics during squatting in those with limited weight-bearing-lunge ankle-dorsiflexion range of motion.
    Dill KE; Begalle RL; Frank BS; Zinder SM; Padua DA
    J Athl Train; 2014; 49(6):723-32. PubMed ID: 25144599
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ankle Dorsiflexion Affects Hip and Knee Biomechanics During Landing.
    Taylor JB; Wright ES; Waxman JP; Schmitz RJ; Groves JD; Shultz SJ
    Sports Health; 2022; 14(3):328-335. PubMed ID: 34096370
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Weightbearing ankle dorsiflexion range of motion and sagittal plane kinematics during single leg drop jump landing in healthy male athletes.
    Dowling B; Mcpherson AL; Paci JM
    J Sports Med Phys Fitness; 2018 Jun; 58(6):867-874. PubMed ID: 28639442
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ankle Dorsiflexion Displacement During Landing is Associated With Initial Contact Kinematics but not Joint Displacement.
    Begalle RL; Walsh MC; McGrath ML; Boling MC; Blackburn JT; Padua DA
    J Appl Biomech; 2015 Aug; 31(4):205-10. PubMed ID: 25734492
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Peak Lower Extremity Landing Kinematics in Dancers and Nondancers.
    Hansberger BL; Acocello S; Slater LV; Hart JM; Ambegaonkar JP
    J Athl Train; 2018 Apr; 53(4):379-385. PubMed ID: 29528687
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Restricting ankle dorsiflexion does not mitigate the benefits of external focus of attention on landing biomechanics in healthy females.
    Haines M; Murray AM; Glaviano NR; Gokeler A; Norte GE
    Hum Mov Sci; 2020 Dec; 74():102719. PubMed ID: 33232855
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The association of visually-assessed quality of movement during jump-landing with ankle dorsiflexion range-of-motion and hip abductor muscle strength among healthy female athletes.
    Rabin A; Einstein O; Kozol Z
    Phys Ther Sport; 2018 May; 31():35-41. PubMed ID: 29525640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gender differences in frontal and sagittal plane biomechanics during drop landings.
    Kernozek TW; Torry MR; VAN Hoof H; Cowley H; Tanner S
    Med Sci Sports Exerc; 2005 Jun; 37(6):1003-12; discussion 1013. PubMed ID: 15947726
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Are Landing Patterns in Jumping Athletes Associated with Patellar Tendinopathy? A Systematic Review with Evidence Gap Map and Meta-analysis.
    Tayfur A; Haque A; Salles JI; Malliaras P; Screen H; Morrissey D
    Sports Med; 2022 Jan; 52(1):123-137. PubMed ID: 34554424
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lower extremity kinematics and ground reaction forces after prophylactic lace-up ankle bracing.
    DiStefano LJ; Padua DA; Brown CN; Guskiewicz KM
    J Athl Train; 2008; 43(3):234-41. PubMed ID: 18523572
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of limiting ankle-dorsiflexion range of motion on lower extremity kinematics and muscle-activation patterns during a squat.
    Macrum E; Bell DR; Boling M; Lewek M; Padua D
    J Sport Rehabil; 2012 May; 21(2):144-50. PubMed ID: 22100617
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Association of Ankle Dorsiflexion Range of Motion With Hip and Knee Kinematics During the Lateral Step-down Test.
    Rabin A; Portnoy S; Kozol Z
    J Orthop Sports Phys Ther; 2016 Nov; 46(11):1002-1009. PubMed ID: 27686412
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of Exercise-Induced Fatigue on Lower Extremity Joint Mechanics, Stiffness, and Energy Absorption during Landings.
    Zhang X; Xia R; Dai B; Sun X; Fu W
    J Sports Sci Med; 2018 Dec; 17(4):640-649. PubMed ID: 30479533
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lower extremity fatigue, sex, and landing performance in a population with recurrent low back pain.
    Haddas R; James CR; Hooper TL
    J Athl Train; 2015 Apr; 50(4):378-84. PubMed ID: 25322344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mid-flight trunk flexion and extension altered segment and lower extremity joint movements and subsequent landing mechanics.
    Davis DJ; Hinshaw TJ; Critchley ML; Dai B
    J Sci Med Sport; 2019 Aug; 22(8):955-961. PubMed ID: 30902539
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.