These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 33571984)

  • 1. Fabrication of PDMS microfluidic devices using nanoclay-reinforced Pluronic F-127 as a sacrificial ink.
    Zhou K; Dey M; Ayan B; Zhang Z; Ozbolat V; Kim MH; Khristov V; Ozbolat IT
    Biomed Mater; 2021 Feb; ():. PubMed ID: 33571984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extrusion-based printing of sacrificial Carbopol ink for fabrication of microfluidic devices.
    Ozbolat V; Dey M; Ayan B; Ozbolat IT
    Biofabrication; 2019 Apr; 11(3):034101. PubMed ID: 30884470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of Two-Layer Microfluidic Devices with Porous Electrodes Using Printed Sacrificial Layers.
    Ino K; Konno A; Utagawa Y; Kanno T; Iwase K; Abe H; Shiku H
    Micromachines (Basel); 2024 Aug; 15(8):. PubMed ID: 39203705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Negligible-cost microfluidic device fabrication using 3D-printed interconnecting channel scaffolds.
    Felton H; Hughes R; Diaz-Gaxiola A
    PLoS One; 2021; 16(2):e0245206. PubMed ID: 33534849
    [TBL] [Abstract][Full Text] [Related]  

  • 5. One-Step Approach to Fabricating Polydimethylsiloxane Microfluidic Channels of Different Geometric Sections by Sequential Wet Etching Processes.
    Wang CK; Liao WH; Wu HM; Tung YC
    J Vis Exp; 2018 Sep; (139):. PubMed ID: 30272670
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D-printed microfluidic devices.
    Amin R; Knowlton S; Hart A; Yenilmez B; Ghaderinezhad F; Katebifar S; Messina M; Khademhosseini A; Tasoglu S
    Biofabrication; 2016 Jun; 8(2):022001. PubMed ID: 27321137
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D printed mold leachates in PDMS microfluidic devices.
    de Almeida Monteiro Melo Ferraz M; Nagashima JB; Venzac B; Le Gac S; Songsasen N
    Sci Rep; 2020 Jan; 10(1):994. PubMed ID: 31969661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sealing 3D-printed parts to poly(dimethylsiloxane) for simple fabrication of Microfluidic devices.
    Carrell CS; McCord CP; Wydallis RM; Henry CS
    Anal Chim Acta; 2020 Aug; 1124():78-84. PubMed ID: 32534678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Facile Route for 3D Printing of Transparent PETg-Based Hybrid Biomicrofluidic Devices Promoting Cell Adhesion.
    Mehta V; Vilikkathala Sudhakaran S; Rath SN
    ACS Biomater Sci Eng; 2021 Aug; 7(8):3947-3963. PubMed ID: 34282888
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of sacrificial ink-assisted embedded printing for 3D perfusable channel creation for biomedical applications.
    Ren B; Song K; Sanikommu AR; Chai Y; Longmire MA; Chai W; Murfee WL; Huang Y
    Appl Phys Rev; 2022 Mar; 9(1):011408. PubMed ID: 35242266
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabricating smooth PDMS microfluidic channels from low-resolution 3D printed molds using an omniphobic lubricant-infused coating.
    Villegas M; Cetinic Z; Shakeri A; Didar TF
    Anal Chim Acta; 2018 Feb; 1000():248-255. PubMed ID: 29289317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Print-Pause-Print Fabrication of Tailored Electrochemical Microfluidic Devices.
    Hernández-Rodríguez JF; Rojas D; Escarpa A
    Anal Chem; 2023 Dec; 95(51):18679-18684. PubMed ID: 38095628
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Macro-to-micro interfacing to microfluidic channels using 3D-printed templates: application to time-resolved secretion sampling of endocrine tissue.
    Brooks JC; Ford KI; Holder DH; Holtan MD; Easley CJ
    Analyst; 2016 Oct; 141(20):5714-5721. PubMed ID: 27486597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-Resin Masked Stereolithography (MSLA) 3D Printing for Rapid and Inexpensive Prototyping of Microfluidic Chips with Integrated Functional Components.
    Ahmed I; Sullivan K; Priye A
    Biosensors (Basel); 2022 Aug; 12(8):. PubMed ID: 36005047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of four functional biocompatible pressure-sensitive adhesives for rapid prototyping of cell-based lab-on-a-chip and organ-on-a-chip systems.
    Kratz SRA; Eilenberger C; Schuller P; Bachmann B; Spitz S; Ertl P; Rothbauer M
    Sci Rep; 2019 Jun; 9(1):9287. PubMed ID: 31243326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mimicking arterial thrombosis in a 3D-printed microfluidic in vitro vascular model based on computed tomography angiography data.
    Costa PF; Albers HJ; Linssen JEA; Middelkamp HHT; van der Hout L; Passier R; van den Berg A; Malda J; van der Meer AD
    Lab Chip; 2017 Aug; 17(16):2785-2792. PubMed ID: 28717801
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of truly 3D microfluidic channel using 3D-printed soluble mold.
    Kang K; Oh S; Yi H; Han S; Hwang Y
    Biomicrofluidics; 2018 Jan; 12(1):014105. PubMed ID: 29375726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Beyond Wax Printing: Fabrication of Paper-Based Microfluidic Devices Using a Thermal Transfer Printer.
    Ruiz RA; Gonzalez JL; Vazquez-Alvarado M; Martinez NW; Martinez AW
    Anal Chem; 2022 Jun; 94(25):8833-8837. PubMed ID: 35694851
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D Printing of PDMS Improves Its Mechanical and Cell Adhesion Properties.
    Ozbolat V; Dey M; Ayan B; Povilianskas A; Demirel MC; Ozbolat IT
    ACS Biomater Sci Eng; 2018 Feb; 4(2):682-693. PubMed ID: 33418756
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic devices manufacturing with a stereolithographic printer for biological applications.
    Carnero B; Bao-Varela C; Gómez-Varela AI; Álvarez E; Flores-Arias MT
    Mater Sci Eng C Mater Biol Appl; 2021 Oct; 129():112388. PubMed ID: 34579907
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.