These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 33572040)

  • 1. A combined geostatistical approach of data fusion and stochastic simulation for probabilistic assessment of shallow water table depth risk.
    Manzione RL; Silva COF; Castrignanò A
    Sci Total Environ; 2021 Apr; 765():142743. PubMed ID: 33572040
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A geostatistical approach for multi-source data fusion to predict water table depth.
    Manzione RL; Castrignanò A
    Sci Total Environ; 2019 Dec; 696():133763. PubMed ID: 31442721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using sequential indicator simulation to assess the uncertainty of delineating heavy-metal contaminated soils.
    Juang KW; Chen YS; Lee DY
    Environ Pollut; 2004; 127(2):229-38. PubMed ID: 14568722
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interpolations of groundwater table elevation in dissected uplands.
    Chung JW; Rogers JD
    Ground Water; 2012; 50(4):598-607. PubMed ID: 22107357
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Geostatistical analysis of disease data: visualization and propagation of spatial uncertainty in cancer mortality risk using Poisson kriging and p-field simulation.
    Goovaerts P
    Int J Health Geogr; 2006 Feb; 5():7. PubMed ID: 16469095
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial evaluation of the risk of groundwater quality degradation. A comparison between disjunctive kriging and geostatistical simulation.
    Barca E; Passarella G
    Environ Monit Assess; 2008 Feb; 137(1-3):261-73. PubMed ID: 17564802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment and uncertainty analysis of groundwater risk.
    Li F; Zhu J; Deng X; Zhao Y; Li S
    Environ Res; 2018 Jan; 160():140-151. PubMed ID: 28987727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A multi-source data fusion approach to assess spatial-temporal variability and delineate homogeneous zones: A use case in a table grape vineyard in Greece.
    Anastasiou E; Castrignanò A; Arvanitis K; Fountas S
    Sci Total Environ; 2019 Sep; 684():155-163. PubMed ID: 31153064
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial uncertainty assessment of the environmental risk of soil copper using auxiliary portable X-ray fluorescence spectrometry data and soil pH.
    Qu M; Wang Y; Huang B; Zhao Y
    Environ Pollut; 2018 Sep; 240():184-190. PubMed ID: 29734079
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stochastic analysis to assess the spatial distribution of groundwater nitrate concentrations in the Po catchment (Italy).
    Cinnirella S; Buttafuoco G; Pirrone N
    Environ Pollut; 2005 Feb; 133(3):569-80. PubMed ID: 15519731
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatially variable pesticide application in olive groves: Evaluation of potential pesticide-savings through stochastic spatial simulation algorithms.
    Rodríguez-Lizana A; Pereira MJ; Ribeiro MC; Soares A; Azevedo L; Miranda-Fuentes A; Llorens J
    Sci Total Environ; 2021 Jul; 778():146111. PubMed ID: 34030368
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Geostatistical analysis of disease data: estimation of cancer mortality risk from empirical frequencies using Poisson kriging.
    Goovaerts P
    Int J Health Geogr; 2005 Dec; 4():31. PubMed ID: 16354294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stochastic reservoir simulation for the modeling of uncertainty in coal seam degasification.
    Karacan CÖ; Olea RA
    Fuel (Lond); 2015 May; 148():87-97. PubMed ID: 29563647
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sources, pathways, and relative risks of contaminants in surface water and groundwater: a perspective prepared for the Walkerton inquiry.
    Ritter L; Solomon K; Sibley P; Hall K; Keen P; Mattu G; Linton B
    J Toxicol Environ Health A; 2002 Jan; 65(1):1-142. PubMed ID: 11809004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application and evaluation of kriging and cokriging methods on groundwater depth mapping.
    Ahmadi SH; Sedghamiz A
    Environ Monit Assess; 2008 Mar; 138(1-3):357-68. PubMed ID: 17525831
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compositional cokriging for mapping the probability risk of groundwater contamination by nitrates.
    Pardo-Igúzquiza E; Chica-Olmo M; Luque-Espinar JA; Rodríguez-Galiano V
    Sci Total Environ; 2015 Nov; 532():162-75. PubMed ID: 26070026
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of geostatistical techniques and their hybrid in modelling of groundwater quality index in the Marand Plain in Iran.
    Rostami AA; Isazadeh M; Shahabi M; Nozari H
    Environ Sci Pollut Res Int; 2019 Dec; 26(34):34993-35009. PubMed ID: 31659709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Geostatistical multimodel approach for the assessment of the spatial distribution of natural background concentrations in large-scale groundwater bodies.
    Molinari A; Guadagnini L; Marcaccio M; Guadagnini A
    Water Res; 2019 Feb; 149():522-532. PubMed ID: 30500687
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Geostatistical analysis of disease data: accounting for spatial support and population density in the isopleth mapping of cancer mortality risk using area-to-point Poisson kriging.
    Goovaerts P
    Int J Health Geogr; 2006 Nov; 5():52. PubMed ID: 17137504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The distribution of arsenic in shallow alluvial groundwater under agricultural land in central Portugal: insights from multivariate geostatistical modeling.
    Andrade AI; Stigter TY
    Sci Total Environ; 2013 Apr; 449():37-51. PubMed ID: 23410893
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.