BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 33572072)

  • 1. Eye-Tracking for Clinical Ophthalmology with Virtual Reality (VR): A Case Study of the HTC Vive Pro Eye's Usability.
    Sipatchin A; Wahl S; Rifai K
    Healthcare (Basel); 2021 Feb; 9(2):. PubMed ID: 33572072
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel virtual reality application for autonomous assessment of cervical range of motion: development and reliability study.
    Santos-Paz JA; Sánchez-Picot Á; Rojo A; Martín-Pintado-Zugasti A; Otero A; Garcia-Carmona R
    PeerJ; 2022; 10():e14031. PubMed ID: 36124134
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing Saccadic Eye Movements With Head-Mounted Display Virtual Reality Technology.
    Imaoka Y; Flury A; de Bruin ED
    Front Psychiatry; 2020; 11():572938. PubMed ID: 33093838
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Comparison of Eye Tracking Latencies Among Several Commercial Head-Mounted Displays.
    Stein N; Niehorster DC; Watson T; Steinicke F; Rifai K; Wahl S; Lappe M
    Iperception; 2021; 12(1):2041669520983338. PubMed ID: 33628410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatiotemporal image quality of virtual reality head mounted displays.
    Zhao C; Kim AS; Beams R; Badano A
    Sci Rep; 2022 Nov; 12(1):20235. PubMed ID: 36424434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Eye Tracking in Virtual Reality: Vive Pro Eye Spatial Accuracy, Precision, and Calibration Reliability.
    Schuetz I; Fiehler K
    J Eye Mov Res; 2022; 15(3):. PubMed ID: 37125009
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measuring Virtual Reality Headset Resolution and Field of View: Implications for Vision Care Applications.
    Lynn MH; Luo G; Tomasi M; Pundlik S; E Houston K
    Optom Vis Sci; 2020 Aug; 97(8):573-582. PubMed ID: 32769841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-Time Eyeblink Detector and Eye State Classifier for Virtual Reality (VR) Headsets (Head-Mounted Displays, HMDs).
    Alsaeedi N; Wloka D
    Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30841622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mobilization and calibration of the HTC VIVE for virtual reality physical therapy.
    Hemphill S; Nguyen A; Rodriguez ST; Menendez M; Wang E; Lawrence K; Caruso TJ
    Digit Health; 2020; 6():2055207620950929. PubMed ID: 32963801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Accuracy and Precision of Position and Orientation Tracking in the HTC Vive Virtual Reality System for Scientific Research.
    Niehorster DC; Li L; Lappe M
    Iperception; 2017; 8(3):2041669517708205. PubMed ID: 28567271
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Patients Prefer a Virtual Reality Approach Over a Similarly Performing Screen-Based Approach for Continuous Oculomotor-Based Screening of Glaucomatous and Neuro-Ophthalmological Visual Field Defects.
    Soans RS; Renken RJ; John J; Bhongade A; Raj D; Saxena R; Tandon R; Gandhi TK; Cornelissen FW
    Front Neurosci; 2021; 15():745355. PubMed ID: 34690682
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Head-Mounted Dynamic Visual Acuity for G-Transition Effects During Interplanetary Spaceflight: Technology Development and Results from an Early Validation Study.
    Waisberg E; Ong J; Zaman N; Kamran SA; Lee AG; Tavakkoli A
    Aerosp Med Hum Perform; 2022 Nov; 93(11):800-805. PubMed ID: 36309801
    [No Abstract]   [Full Text] [Related]  

  • 13. Virtual Reality as a Therapy Tool for Walking Activities in Pediatric Neurorehabilitation: Usability and User Experience Evaluation.
    Ammann-Reiffer C; Kläy A; Keller U
    JMIR Serious Games; 2022 Jul; 10(3):e38509. PubMed ID: 35834316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigating the Use of Virtual Reality Headsets for Postural Control Assessment: Instrument Validation Study.
    Sylcott B; Lin CC; Williams K; Hinderaker M
    JMIR Rehabil Assist Technol; 2021 Nov; 8(4):e24950. PubMed ID: 34779789
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application and Validation of LUXIE: A Newly Developed Virtual Reality Perimetry Software.
    Chen YT; Yeh PH; Cheng YC; Su WW; Hwang YS; Chen HS; Lee YS; Shen SC
    J Pers Med; 2022 Sep; 12(10):. PubMed ID: 36294698
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Naturalistic visualization of reaching movements using head-mounted displays improves movement quality compared to conventional computer screens and proves high usability.
    Wenk N; Buetler KA; Penalver-Andres J; Müri RM; Marchal-Crespo L
    J Neuroeng Rehabil; 2022 Dec; 19(1):137. PubMed ID: 36494668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Case for Studying Naturalistic Eye and Head Movements in Virtual Environments.
    Callahan-Flintoft C; Barentine C; Touryan J; Ries AJ
    Front Psychol; 2021; 12():650693. PubMed ID: 35035362
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of Oculus Rift and HTC Vive: Feasibility for Virtual Reality-Based Exploration, Navigation, Exergaming, and Rehabilitation.
    Borrego A; Latorre J; Alcañiz M; Llorens R
    Games Health J; 2018 Jun; 7(3):151-156. PubMed ID: 29293369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advancing Cardiac Surgery Case Planning and Case Review Conferences Using Virtual Reality in Medical Libraries: Evaluation of the Usability of Two Virtual Reality Apps.
    Napa S; Moore M; Bardyn T
    JMIR Hum Factors; 2019 Jan; 6(1):e12008. PubMed ID: 30664469
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immersive virtual reality during gait rehabilitation increases walking speed and motivation: a usability evaluation with healthy participants and patients with multiple sclerosis and stroke.
    Winter C; Kern F; Gall D; Latoschik ME; Pauli P; Käthner I
    J Neuroeng Rehabil; 2021 Apr; 18(1):68. PubMed ID: 33888148
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.