These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 33572184)

  • 41. The interplay of fibronectin functionalization and TGF-β1 presence on fibroblast proliferation, differentiation and migration in 3D matrices.
    Sapudom J; Rubner S; Martin S; Thoenes S; Anderegg U; Pompe T
    Biomater Sci; 2015 Sep; 3(9):1291-301. PubMed ID: 26230292
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Computational modelling of multi-cell migration in a multi-signalling substrate.
    Mousavi SJ; Doblaré M; Doweidar MH
    Phys Biol; 2014 Apr; 11(2):026002. PubMed ID: 24632566
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Multiphoton Fabrication of Fibronectin-Functionalized Protein Micropatterns: Stiffness-Induced Maturation of Cell-Matrix Adhesions in Human Mesenchymal Stem Cells.
    Ma J; Li C; Huang N; Wang X; Tong M; Ngan AHW; Chan BP
    ACS Appl Mater Interfaces; 2017 Sep; 9(35):29469-29480. PubMed ID: 28809529
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Importance of endogenous extracellular matrix in biomechanical properties of human skin model.
    Pillet F; Gibot L; Madi M; Rols MP; Dague E
    Biofabrication; 2017 May; 9(2):025017. PubMed ID: 28493850
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Computational model for cell migration in three-dimensional matrices.
    Zaman MH; Kamm RD; Matsudaira P; Lauffenburger DA
    Biophys J; 2005 Aug; 89(2):1389-97. PubMed ID: 15908579
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Determining the most important cellular characteristics for fracture healing using design of experiments methods.
    Isaksson H; van Donkelaar CC; Huiskes R; Yao J; Ito K
    J Theor Biol; 2008 Nov; 255(1):26-39. PubMed ID: 18723028
    [TBL] [Abstract][Full Text] [Related]  

  • 47. On the modelling of biological patterns with mechanochemical models: Insights from analysis and computation.
    Moreo P; Gaffney EA; García-Aznar JM; Doblaré M
    Bull Math Biol; 2010 Feb; 72(2):400-31. PubMed ID: 19915925
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Functional Maturation of Induced Pluripotent Stem Cell Hepatocytes in Extracellular Matrix-A Comparative Analysis of Bioartificial Liver Microenvironments.
    Wang B; Jakus AE; Baptista PM; Soker S; Soto-Gutierrez A; Abecassis MM; Shah RN; Wertheim JA
    Stem Cells Transl Med; 2016 Sep; 5(9):1257-67. PubMed ID: 27421950
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Functional Tissue Engineering: A Prevascularized Cardiac Muscle Construct for Validating Human Mesenchymal Stem Cells Engraftment Potential In Vitro.
    Valarmathi MT; Fuseler JW; Potts JD; Davis JM; Price RL
    Tissue Eng Part A; 2018 Jan; 24(1-2):157-185. PubMed ID: 28457188
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A mechano-regulatory bone-healing model incorporating cell-phenotype specific activity.
    Isaksson H; van Donkelaar CC; Huiskes R; Ito K
    J Theor Biol; 2008 May; 252(2):230-46. PubMed ID: 18353374
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Three-dimensional finite element modeling of skeletal muscle using a two-domain approach: linked fiber-matrix mesh model.
    Yucesoy CA; Koopman BH; Huijing PA; Grootenboer HJ
    J Biomech; 2002 Sep; 35(9):1253-62. PubMed ID: 12163314
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Coupled agent-based and finite-element models for predicting scar structure following myocardial infarction.
    Rouillard AD; Holmes JW
    Prog Biophys Mol Biol; 2014 Aug; 115(2-3):235-43. PubMed ID: 25009995
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Transforming growth factor-beta1 modulates extracellular matrix production, proliferation, and apoptosis of endothelial progenitor cells in tissue-engineering scaffolds.
    Sales VL; Engelmayr GC; Mettler BA; Johnson JA; Sacks MS; Mayer JE
    Circulation; 2006 Jul; 114(1 Suppl):I193-9. PubMed ID: 16820571
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Bioreactor-induced mesenchymal progenitor cell differentiation and elastic fiber assembly in engineered vascular tissues.
    Lin S; Mequanint K
    Acta Biomater; 2017 Sep; 59():200-209. PubMed ID: 28690007
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mesenchymal Stromal Cell-Produced Components of Extracellular Matrix Potentiate Multipotent Stem Cell Response to Differentiation Stimuli.
    Novoseletskaya E; Grigorieva O; Nimiritsky P; Basalova N; Eremichev R; Milovskaya I; Kulebyakin K; Kulebyakina M; Rodionov S; Omelyanenko N; Efimenko A
    Front Cell Dev Biol; 2020; 8():555378. PubMed ID: 33072743
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cardiomyogenesis Modeling Using Pluripotent Stem Cells: The Role of Microenvironmental Signaling.
    Leitolis A; Robert AW; Pereira IT; Correa A; Stimamiglio MA
    Front Cell Dev Biol; 2019; 7():164. PubMed ID: 31448277
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Extracellular matrix regulation of cell-cell communication and tissue-specific gene expression in primary liver cultures.
    Fujita M; Spray DC; Choi H; Saez J; Jefferson DM; Hertzberg E; Rosenberg LC; Reid LM
    Prog Clin Biol Res; 1986; 226():333-60. PubMed ID: 3543962
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Design, Implementation, and Validation of a Piezoelectric Device to Study the Effects of Dynamic Mechanical Stimulation on Cell Proliferation, Migration and Morphology.
    Mojena-Medina D; Martínez-Hernández M; de la Fuente M; García-Isla G; Posada J; Jorcano JL; Acedo P
    Sensors (Basel); 2020 Apr; 20(7):. PubMed ID: 32290334
    [TBL] [Abstract][Full Text] [Related]  

  • 59. 3D is not enough: Building up a cell instructive microenvironment for tumoral stroma microtissues.
    Brancato V; Garziano A; Gioiella F; Urciuolo F; Imparato G; Panzetta V; Fusco S; Netti PA
    Acta Biomater; 2017 Jan; 47():1-13. PubMed ID: 27721010
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A new three-dimensional glass scaffold increases the in vitro maturation efficiency of buffalo (Bubalus bubalis) oocyte via remodelling the extracellular matrix and cell connection of cumulus cells.
    Shen P; Xu J; Wang P; Zhao X; Huang B; Wu F; Wang L; Chen W; Feng Y; Guo Z; Liu X; Deng Y; Jiang J; Shi D; Lu F
    Reprod Domest Anim; 2020 Feb; 55(2):170-180. PubMed ID: 31816136
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.