These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 33572200)

  • 1. Functional Self-Awareness and Metacontrol for Underwater Robot Autonomy.
    Aguado E; Milosevic Z; Hernández C; Sanz R; Garzon M; Bozhinoski D; Rossi C
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33572200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A survey of ontology-enabled processes for dependable robot autonomy.
    Aguado E; Gomez V; Hernando M; Rossi C; Sanz R
    Front Robot AI; 2024; 11():1377897. PubMed ID: 39050488
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Dynamically Reconfigurable Autonomous Underwater Robot for Karst Exploration: Design and Experiment.
    Dang T; Lapierre L; Zapata R; Ropars B; Gourmelen G
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35591072
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Guidance for Autonomous Underwater Vehicles in Confined Semistructured Environments.
    Milosevic Z; Fernandez RAS; Dominguez S; Rossi C
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33348753
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multimodal soft valve enables physical responsiveness for preemptive resilience of soft robots.
    Pontin M; Damian DD
    Sci Robot; 2024 Jul; 9(92):eadk9978. PubMed ID: 39047079
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A swarm of autonomous miniature underwater robot drifters for exploring submesoscale ocean dynamics.
    Jaffe JS; Franks PJ; Roberts PL; Mirza D; Schurgers C; Kastner R; Boch A
    Nat Commun; 2017 Jan; 8():14189. PubMed ID: 28117837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inspection and maintenance of industrial infrastructure with autonomous underwater robots.
    Nauert F; Kampmann P
    Front Robot AI; 2023; 10():1240276. PubMed ID: 37692529
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioinspired Control Architecture for Adaptive and Resilient Navigation of Unmanned Underwater Vehicle in Monitoring Missions of Submerged Aquatic Vegetation Meadows.
    García-Córdova F; Guerrero-González A; Hidalgo-Castelo F
    Biomimetics (Basel); 2024 May; 9(6):. PubMed ID: 38921208
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multipotent Systems: Combining Planning, Self-Organization, and Reconfiguration in Modular Robot Ensembles.
    Kosak O; Wanninger C; Hoffmann A; Ponsar H; Reif W
    Sensors (Basel); 2018 Dec; 19(1):. PubMed ID: 30577565
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy-Efficient Configuration and Control Allocation for a Dynamically Reconfigurable Underwater Robot.
    Dang T; Lapierre L; Zapata R; Ropars B
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward a framework for levels of robot autonomy in human-robot interaction.
    Beer JM; Fisk AD; Rogers WA
    J Hum Robot Interact; 2014 Jul; 3(2):74-99. PubMed ID: 29082107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Underwater Robot Task Planning Using Multi-Objective Meta-Heuristics.
    Landa-Torres I; Manjarres D; Bilbao S; Del Ser J
    Sensors (Basel); 2017 Apr; 17(4):. PubMed ID: 28375160
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A System for Autonomous Seaweed Farm Inspection with an Underwater Robot.
    Stenius I; Folkesson J; Bhat S; Sprague CI; Ling L; Özkahraman Ö; Bore N; Cong Z; Severholt J; Ljung C; Arnwald A; Torroba I; Gröndahl F; Thomas JB
    Sensors (Basel); 2022 Jul; 22(13):. PubMed ID: 35808560
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Positioning, Navigation, and Book Accessing/Returning in an Autonomous Library Robot using Integrated Binocular Vision and QR Code Identification Systems.
    Yu X; Fan Z; Wan H; He Y; Du J; Li N; Yuan Z; Xiao G
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30769857
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An End-to-End Deep Reinforcement Learning-Based Intelligent Agent Capable of Autonomous Exploration in Unknown Environments.
    Ramezani Dooraki A; Lee DJ
    Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30360397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Meaningful human control and variable autonomy in human-robot teams for firefighting.
    Verhagen RS; Neerincx MA; Tielman ML
    Front Robot AI; 2024; 11():1323980. PubMed ID: 38361604
    [No Abstract]   [Full Text] [Related]  

  • 17. HiMoP: A three-component architecture to create more human-acceptable social-assistive robots : Motivational architecture for assistive robots.
    Rodríguez-Lera FJ; Matellán-Olivera V; Conde-González MÁ; Martín-Rico F
    Cogn Process; 2018 May; 19(2):233-244. PubMed ID: 29305760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental investigation of efficient locomotion of underwater snake robots for lateral undulation and eel-like motion patterns.
    Kelasidi E; Liljebäck P; Pettersen KY; Gravdahl JT
    Robotics Biomim; 2015; 2():8. PubMed ID: 26705512
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SWARMs Ontology: A Common Information Model for the Cooperation of Underwater Robots.
    Li X; Bilbao S; Martín-Wanton T; Bastos J; Rodriguez J
    Sensors (Basel); 2017 Mar; 17(3):. PubMed ID: 28287468
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.