These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
294 related articles for article (PubMed ID: 33572219)
1. Multimetallic Nanoparticles as Alternative Antimicrobial Agents: Challenges and Perspectives. Basavegowda N; Baek KH Molecules; 2021 Feb; 26(4):. PubMed ID: 33572219 [TBL] [Abstract][Full Text] [Related]
2. Thymol-Decorated Gold Nanoparticles for Curing Clinical Infections Caused by Bacteria Resistant to Last-Resort Antibiotics. Huang Z; Zhang X; Yao Z; Han Y; Ye J; Zhang Y; Chen L; Shen M; Zhou T mSphere; 2023 Jun; 8(3):e0054922. PubMed ID: 37017551 [TBL] [Abstract][Full Text] [Related]
3. Nanoarchitectonics for synergistic activity of multimetallic nanohybrids as a possible approach for antimicrobial resistance (AMR). Yapa PN; Munaweera I; Weerasekera MM; Weerasinghe L J Biol Inorg Chem; 2024 Aug; 29(5):477-498. PubMed ID: 38995397 [TBL] [Abstract][Full Text] [Related]
4. Nanomaterials for alternative antibacterial therapy. Hemeg HA Int J Nanomedicine; 2017; 12():8211-8225. PubMed ID: 29184409 [TBL] [Abstract][Full Text] [Related]
5. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Wang L; Hu C; Shao L Int J Nanomedicine; 2017; 12():1227-1249. PubMed ID: 28243086 [TBL] [Abstract][Full Text] [Related]
6. Nanoparticles and their antimicrobial properties against pathogens including bacteria, fungi, parasites and viruses. Khezerlou A; Alizadeh-Sani M; Azizi-Lalabadi M; Ehsani A Microb Pathog; 2018 Oct; 123():505-526. PubMed ID: 30092260 [TBL] [Abstract][Full Text] [Related]
7. Current state on the development of nanoparticles for use against bacterial gastrointestinal pathogens. Focus on chitosan nanoparticles loaded with phenolic compounds. Madureira AR; Pereira A; Pintado M Carbohydr Polym; 2015 Oct; 130():429-39. PubMed ID: 26076644 [TBL] [Abstract][Full Text] [Related]
8. Metal oxide nanoparticles as antimicrobial agents: a promise for the future. Raghunath A; Perumal E Int J Antimicrob Agents; 2017 Feb; 49(2):137-152. PubMed ID: 28089172 [TBL] [Abstract][Full Text] [Related]
9. Antimicrobial activity of the metals and metal oxide nanoparticles. Dizaj SM; Lotfipour F; Barzegar-Jalali M; Zarrintan MH; Adibkia K Mater Sci Eng C Mater Biol Appl; 2014 Nov; 44():278-84. PubMed ID: 25280707 [TBL] [Abstract][Full Text] [Related]
10. In vivo antimicrobial activity of silver nanoparticles produced via a green chemistry synthesis using Escárcega-González CE; Garza-Cervantes JA; Vázquez-Rodríguez A; Montelongo-Peralta LZ; Treviño-González MT; Díaz Barriga Castro E; Saucedo-Salazar EM; Chávez Morales RM; Regalado Soto DI; Treviño González FM; Carrazco Rosales JL; Cruz RV; Morones-Ramírez JR Int J Nanomedicine; 2018; 13():2349-2363. PubMed ID: 29713166 [TBL] [Abstract][Full Text] [Related]
11. A mechanistic perspective on targeting bacterial drug resistance with nanoparticles. Khorsandi K; Keyvani-Ghamsari S; Khatibi Shahidi F; Hosseinzadeh R; Kanwal S J Drug Target; 2021 Nov; 29(9):941-959. PubMed ID: 33703979 [TBL] [Abstract][Full Text] [Related]
12. Functionalization of Inorganic Nanoparticles to Augment Antimicrobial Efficiency: A Critical Analysis. Khan K; Javed S Curr Pharm Biotechnol; 2018; 19(7):523-536. PubMed ID: 30062962 [TBL] [Abstract][Full Text] [Related]
13. Mechanistic Insights into the Antimicrobial Actions of Metallic Nanoparticles and Their Implications for Multidrug Resistance. Shaikh S; Nazam N; Rizvi SMD; Ahmad K; Baig MH; Lee EJ; Choi I Int J Mol Sci; 2019 May; 20(10):. PubMed ID: 31109079 [TBL] [Abstract][Full Text] [Related]
14. Metal nanoparticles: understanding the mechanisms behind antibacterial activity. Slavin YN; Asnis J; Häfeli UO; Bach H J Nanobiotechnology; 2017 Oct; 15(1):65. PubMed ID: 28974225 [TBL] [Abstract][Full Text] [Related]
15. Essential Oils and Mono/bi/tri-Metallic Nanocomposites as Alternative Sources of Antimicrobial Agents to Combat Multidrug-Resistant Pathogenic Microorganisms: An Overview. Basavegowda N; Patra JK; Baek KH Molecules; 2020 Feb; 25(5):. PubMed ID: 32120930 [TBL] [Abstract][Full Text] [Related]
16. Engineering highly effective antimicrobial selenium nanoparticles through control of particle size. Huang T; Holden JA; Heath DE; O'Brien-Simpson NM; O'Connor AJ Nanoscale; 2019 Aug; 11(31):14937-14951. PubMed ID: 31363721 [TBL] [Abstract][Full Text] [Related]
17. Nanotechnology as a therapeutic tool to combat microbial resistance. Pelgrift RY; Friedman AJ Adv Drug Deliv Rev; 2013 Nov; 65(13-14):1803-15. PubMed ID: 23892192 [TBL] [Abstract][Full Text] [Related]
18. From Nano to Micro: using nanotechnology to combat microorganisms and their multidrug resistance. Natan M; Banin E FEMS Microbiol Rev; 2017 May; 41(3):302-322. PubMed ID: 28419240 [TBL] [Abstract][Full Text] [Related]
19. Coping with antibiotic resistance: combining nanoparticles with antibiotics and other antimicrobial agents. Allahverdiyev AM; Kon KV; Abamor ES; Bagirova M; Rafailovich M Expert Rev Anti Infect Ther; 2011 Nov; 9(11):1035-52. PubMed ID: 22029522 [TBL] [Abstract][Full Text] [Related]
20. Engineering Antimicrobial Metal-Phenolic Network Nanoparticles with High Biocompatibility for Wound Healing. Yu R; Chen H; He J; Zhang Z; Zhou J; Zheng Q; Fu Z; Lu C; Lin Z; Caruso F; Zhang X Adv Mater; 2024 Feb; 36(6):e2307680. PubMed ID: 37997498 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]