BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 33572249)

  • 1. Machine Learning Algorithms for Activity-Intensity Recognition Using Accelerometer Data.
    Gomes E; Bertini L; Campos WR; Sobral AP; Mocaiber I; Copetti A
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33572249
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Support Vector Machine Classifiers Show High Generalizability in Automatic Fall Detection in Older Adults.
    Alizadeh J; Bogdan M; Classen J; Fricke C
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770473
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved supervised classification of accelerometry data to distinguish behaviors of soaring birds.
    Sur M; Suffredini T; Wessells SM; Bloom PH; Lanzone M; Blackshire S; Sridhar S; Katzner T
    PLoS One; 2017; 12(4):e0174785. PubMed ID: 28403159
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recognition of Emotion Intensities Using Machine Learning Algorithms: A Comparative Study.
    Mehta D; Siddiqui MFH; Javaid AY
    Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 31010081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensor-enabled Activity Class Recognition in Preschoolers: Hip versus Wrist Data.
    Trost SG; Cliff DP; Ahmadi MN; Tuc NV; Hagenbuchner M
    Med Sci Sports Exerc; 2018 Mar; 50(3):634-641. PubMed ID: 29059107
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic machine-learning based identification of jogging periods from accelerometer measurements of adolescents under field conditions.
    Zdravevski E; Risteska Stojkoska B; Standl M; Schulz H
    PLoS One; 2017; 12(9):e0184216. PubMed ID: 28880923
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Soft Clustering for Enhancing the Diagnosis of Chronic Diseases over Machine Learning Algorithms.
    Aldhyani THH; Alshebami AS; Alzahrani MY
    J Healthc Eng; 2020; 2020():4984967. PubMed ID: 32211144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of supervised machine learning algorithms in the classification of sagittal gait patterns of cerebral palsy children with spastic diplegia.
    Zhang Y; Ma Y
    Comput Biol Med; 2019 Mar; 106():33-39. PubMed ID: 30665140
    [TBL] [Abstract][Full Text] [Related]  

  • 9.
    Raeisi Shahraki H; Pourahmad S; Zare N
    Biomed Res Int; 2017; 2017():7560807. PubMed ID: 29376076
    [No Abstract]   [Full Text] [Related]  

  • 10. Ensemble Methods for Classification of Physical Activities from Wrist Accelerometry.
    Chowdhury AK; Tjondronegoro D; Chandran V; Trost SG
    Med Sci Sports Exerc; 2017 Sep; 49(9):1965-1973. PubMed ID: 28419025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluating the Impact of a Two-Stage Multivariate Data Cleansing Approach to Improve to the Performance of Machine Learning Classifiers: A Case Study in Human Activity Recognition.
    Neira-Rodado D; Nugent C; Cleland I; Velasquez J; Viloria A
    Sensors (Basel); 2020 Mar; 20(7):. PubMed ID: 32230844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cross-validation and out-of-sample testing of physical activity intensity predictions with a wrist-worn accelerometer.
    Montoye AHK; Westgate BS; Fonley MR; Pfeiffer KA
    J Appl Physiol (1985); 2018 May; 124(5):1284-1293. PubMed ID: 29369742
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative Study of Classification Algorithms for Various DNA Microarray Data.
    Kim J; Yoon Y; Park HJ; Kim YH
    Genes (Basel); 2022 Mar; 13(3):. PubMed ID: 35328048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human Activity Recognition Algorithm with Physiological and Inertial Signals Fusion: Photoplethysmography, Electrodermal Activity, and Accelerometry.
    Gilmore J; Nasseri M
    Sensors (Basel); 2024 May; 24(10):. PubMed ID: 38793858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine-learning models for activity class prediction: A comparative study of feature selection and classification algorithms.
    Chong J; Tjurin P; Niemelä M; Jämsä T; Farrahi V
    Gait Posture; 2021 Sep; 89():45-53. PubMed ID: 34225240
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Feature Analysis of Smart Shoe Sensors for Classification of Gait Patterns.
    Sunarya U; Sun Hariyani Y; Cho T; Roh J; Hyeong J; Sohn I; Kim S; Park C
    Sensors (Basel); 2020 Nov; 20(21):. PubMed ID: 33147794
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accuracy of Samsung Gear S Smartwatch for Activity Recognition: Validation Study.
    Davoudi A; Wanigatunga AA; Kheirkhahan M; Corbett DB; Mendoza T; Battula M; Ranka S; Fillingim RB; Manini TM; Rashidi P
    JMIR Mhealth Uhealth; 2019 Feb; 7(2):e11270. PubMed ID: 30724739
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Feature Selection and Comparison of Machine Learning Algorithms in Classification of Grazing and Rumination Behaviour in Sheep.
    Mansbridge N; Mitsch J; Bollard N; Ellis K; Miguel-Pacheco GG; Dottorini T; Kaler J
    Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30347653
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of sensor data pre-processing strategies and selection of machine learning algorithm on the prediction of metritis events in dairy cattle.
    Vidal G; Sharpnack J; Pinedo P; Tsai IC; Lee AR; Martínez-López B
    Prev Vet Med; 2023 Jun; 215():105903. PubMed ID: 37028189
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Free-living Evaluation of Laboratory-based Activity Classifiers in Preschoolers.
    Ahmadi MN; Brookes D; Chowdhury A; Pavey T; Trost SG
    Med Sci Sports Exerc; 2020 May; 52(5):1227-1234. PubMed ID: 31764460
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.