These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 33572424)

  • 21. Analytical strategies in mass spectrometry-based phosphoproteomics.
    Rosenqvist H; Ye J; Jensen ON
    Methods Mol Biol; 2011; 753():183-213. PubMed ID: 21604124
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Strong anion exchange-mediated phosphoproteomics reveals extensive human non-canonical phosphorylation.
    Hardman G; Perkins S; Brownridge PJ; Clarke CJ; Byrne DP; Campbell AE; Kalyuzhnyy A; Myall A; Eyers PA; Jones AR; Eyers CE
    EMBO J; 2019 Oct; 38(21):e100847. PubMed ID: 31433507
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mitotic substrates of the kinase aurora with roles in chromatin regulation identified through quantitative phosphoproteomics of fission yeast.
    Koch A; Krug K; Pengelley S; Macek B; Hauf S
    Sci Signal; 2011 Jun; 4(179):rs6. PubMed ID: 21712547
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantitative Analysis of Tissue Samples by Combining iTRAQ Isobaric Labeling with Selected/Multiple Reaction Monitoring (SRM/MRM).
    Narumi R; Tomonaga T
    Methods Mol Biol; 2016; 1355():85-101. PubMed ID: 26584920
    [TBL] [Abstract][Full Text] [Related]  

  • 25. TiSH--a robust and sensitive global phosphoproteomics strategy employing a combination of TiO2, SIMAC, and HILIC.
    Engholm-Keller K; Birck P; Størling J; Pociot F; Mandrup-Poulsen T; Larsen MR
    J Proteomics; 2012 Oct; 75(18):5749-61. PubMed ID: 22906719
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Complementary workflow for global phosphoproteome analysis.
    Li QR; Ning ZB; Yang XL; Wu JR; Zeng R
    Electrophoresis; 2012 Nov; 33(22):3291-8. PubMed ID: 23097065
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Up-to-Date Workflow for Plant (Phospho)proteomics Identifies Differential Drought-Responsive Phosphorylation Events in Maize Leaves.
    Vu LD; Stes E; Van Bel M; Nelissen H; Maddelein D; Inzé D; Coppens F; Martens L; Gevaert K; De Smet I
    J Proteome Res; 2016 Dec; 15(12):4304-4317. PubMed ID: 27643528
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The TOR pathway modulates cytoophidium formation in
    Andreadis C; Hulme L; Wensley K; Liu JL
    J Biol Chem; 2019 Oct; 294(40):14686-14703. PubMed ID: 31431504
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification of Novel Physiological Substrates of
    Nakedi KC; Calder B; Banerjee M; Giddey A; Nel AJM; Garnett S; Blackburn JM; Soares NC
    Mol Cell Proteomics; 2018 Jul; 17(7):1365-1377. PubMed ID: 29549130
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multidimensional strategy for sensitive phosphoproteomics incorporating protein prefractionation combined with SIMAC, HILIC, and TiO(2) chromatography applied to proximal EGF signaling.
    Engholm-Keller K; Hansen TA; Palmisano G; Larsen MR
    J Proteome Res; 2011 Dec; 10(12):5383-97. PubMed ID: 21955146
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparative proteomic and transcriptomic profiling of the fission yeast Schizosaccharomyces pombe.
    Schmidt MW; Houseman A; Ivanov AR; Wolf DA
    Mol Syst Biol; 2007; 3():79. PubMed ID: 17299416
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The TOR-dependent phosphoproteome and regulation of cellular protein synthesis.
    Mak T; Jones AW; Nurse P
    EMBO J; 2021 Aug; 40(16):e107911. PubMed ID: 34296454
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A review on recent trends in the phosphoproteomics workflow. From sample preparation to data analysis.
    Urban J
    Anal Chim Acta; 2022 Mar; 1199():338857. PubMed ID: 35227377
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Probing the global kinome and phosphoproteome in Chlamydomonas reinhardtii via sequential enrichment and quantitative proteomics.
    Werth EG; McConnell EW; Gilbert TS; Couso Lianez I; Perez CA; Manley CK; Graves LM; Umen JG; Hicks LM
    Plant J; 2017 Jan; 89(2):416-426. PubMed ID: 27671103
    [TBL] [Abstract][Full Text] [Related]  

  • 35. New ammunition for the proteomic reactor: strong anion exchange beads and multiple enzymes enhance protein identification and sequence coverage.
    Zhou H; Hou W; Lambert JP; Figeys D
    Anal Bioanal Chem; 2010 Aug; 397(8):3421-30. PubMed ID: 20517600
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Highly sensitive phosphoproteomics by tailoring solid-phase extraction to electrostatic repulsion-hydrophilic interaction chromatography.
    Loroch S; Zahedi RP; Sickmann A
    Anal Chem; 2015 Feb; 87(3):1596-604. PubMed ID: 25405705
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The protein and neutral lipid composition of lipid droplets isolated from the fission yeast, Schizosaccharomyces pombe.
    Meyers A; Chourey K; Weiskittel TM; Pfiffner S; Dunlap JR; Hettich RL; Dalhaimer P
    J Microbiol; 2017 Feb; 55(2):112-122. PubMed ID: 28120187
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantitative phosphoproteomics to characterize signaling networks.
    Rigbolt KT; Blagoev B
    Semin Cell Dev Biol; 2012 Oct; 23(8):863-71. PubMed ID: 22677334
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The novel Rho GTPase-activating protein family protein, Rga8, provides a potential link between Cdc42/p21-activated kinase and Rho signaling pathways in the fission yeast, Schizosaccharomyces pombe.
    Yang P; Qyang Y; Bartholomeusz G; Zhou X; Marcus S
    J Biol Chem; 2003 Dec; 278(49):48821-30. PubMed ID: 14506270
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Offline High pH Reversed-Phase Peptide Fractionation for Deep Phosphoproteome Coverage.
    Batth TS; Olsen JV
    Methods Mol Biol; 2016; 1355():179-92. PubMed ID: 26584926
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.