These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 33572686)

  • 1. Effect of Specimen Thickness and Stress Intensity Factor Range on Plasticity-Induced Fatigue Crack Closure in A7075-T6 Alloy.
    Masuda K; Ishihara S; Oguma N
    Materials (Basel); 2021 Jan; 14(3):. PubMed ID: 33572686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Revisiting Classical Issues of Fatigue Crack Growth Using a Non-Linear Approach.
    Borges MF; Neto DM; Antunes FV
    Materials (Basel); 2020 Dec; 13(23):. PubMed ID: 33291754
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanistic aspects of fatigue crack growth behavior in resin based dental restorative composites.
    Shah MB; Ferracane JL; Kruzic JJ
    Dent Mater; 2009 Jul; 25(7):909-16. PubMed ID: 19233460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unusual Fatigue Crack Growth Behavior of Long Cracks at Low Stress Intensity Factor Ranges.
    Kujawski D; Vasudevan AK
    Materials (Basel); 2024 Feb; 17(4):. PubMed ID: 38399043
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FCG Modelling Considering the Combined Effects of Cyclic Plastic Deformation and Growth of Micro-Voids.
    Sérgio ER; Antunes FV; Borges MF; Neto DM
    Materials (Basel); 2021 Jul; 14(15):. PubMed ID: 34361497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of Precipitate Microstructure Affecting Fatigue Behavior of 7020 Aluminum Alloy.
    Shan Z; Liu S; Ye L; Li Y; He C; Chen J; Tang J; Deng Y; Zhang X
    Materials (Basel); 2020 Jul; 13(15):. PubMed ID: 32707847
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of Corrosive Fatigue Life of Submarine Pipelines of API 5L X56 Steel Materials.
    Gao X; Shao Y; Xie L; Wang Y; Yang D
    Materials (Basel); 2019 Mar; 12(7):. PubMed ID: 30925744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fatigue crack propagation rates in PMMA bone cement cannot be reduced to a single power law.
    Race A; Mann KA
    J Biomed Mater Res B Appl Biomater; 2008 Jul; 86(1):278-82. PubMed ID: 18161813
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of TiB Orientation on Near-Threshold Fatigue Crack Propagation in TiB-Reinforced Ti-3Al-2.5V Matrix Composites Treated with Heat Extrusion.
    Kikuchi S; Tamai S; Kawai T; Nakai Y; Kurita H; Gourdet S
    Materials (Basel); 2019 Nov; 12(22):. PubMed ID: 31717310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elasto-Plastic Fatigue Crack Growth Behavior of Extruded Mg Alloy with Deformation Anisotropy Due to Stress Ratio Fluctuation.
    Masuda K; Ishihara S; Oguma N; Ishiguro M; Sakamoto Y
    Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35160700
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of Fatigue Crack Initiation of 7075 Aluminum Alloy by Crystal Plasticity Simulation.
    Shiraiwa T; Briffod F; Enoki M
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837226
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Mechanism of Creep during Crack Propagation of a Superalloy under Fatigue-Creep-Environment Interactions.
    Wang M; Du J; Deng Q
    Materials (Basel); 2020 Oct; 13(19):. PubMed ID: 33020419
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peak stress intensity factor governs crack propagation velocity in crosslinked ultrahigh-molecular-weight polyethylene.
    Sirimamilla A; Furmanski J; Rimnac C
    J Biomed Mater Res B Appl Biomater; 2013 Apr; 101(3):430-5. PubMed ID: 23165898
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fatigue Fracture Analysis on 2524 Aluminum Alloy with the Influence of Creep-Aging Forming Processes.
    Ma L; Liu C; Ma M; Wang Z; Wu D; Liu L; Song M
    Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591577
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fatigue Crack Growth Rates and Crack Tip Opening Loads in CT Specimens Made of SDSS and Manufactured Using WAAM.
    Sales A; Khanna A; Hughes J; Yin L; Kotousov A
    Materials (Basel); 2024 Apr; 17(8):. PubMed ID: 38673199
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Research on the Fatigue Crack Growth Behavior of a Zr/Ti/Steel Composite Plate with a Crack Normal to the Interface.
    Zhou B; Yuan J; Song H; Zhou L; Chang L; Zhou C; Ye C; Zhang B
    Materials (Basel); 2023 Jul; 16(15):. PubMed ID: 37569991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Numerical Analysis of the In-Plane Constraint Influence on the Behavior of the Crack Subjected to Cyclic Loading.
    Galkiewicz J; Janus-Galkiewicz U
    Materials (Basel); 2021 Apr; 14(7):. PubMed ID: 33918434
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reliability of PMMA bone cement fixation: fracture and fatigue crack-growth behaviour.
    Nguyen NC; Maloney WJ; Dauskardt RH
    J Mater Sci Mater Med; 1997 Aug; 8(8):473-83. PubMed ID: 15348713
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fatigue Crack Arrest Induced by Localized Compressive Deformation.
    Barragán ER; Ambriz RR; Frutos JA; García CJ; Gómora CM; Jaramillo D
    Materials (Basel); 2022 Jun; 15(13):. PubMed ID: 35806676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fatigue Crack Growth Analysis under Constant Amplitude Loading Using Finite Element Method.
    Alshoaibi AM
    Materials (Basel); 2022 Apr; 15(8):. PubMed ID: 35454630
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.