These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 33572791)

  • 1. Quantitative Evaluation of the Effect of Temperature on Magnetic Barkhausen Noise.
    Wang Y; Meydan T; Melikhov Y
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33572791
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of Time-Frequency Representation of Magnetic Barkhausen Noise for Evaluation of Easy Magnetization Axis of Grain-Oriented Steel.
    Maciusowicz M; Psuj G
    Materials (Basel); 2020 Jul; 13(15):. PubMed ID: 32751858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time-Frequency Analysis of Barkhausen Noise for the Needs of Anisotropy Evaluation of Grain-Oriented Steels.
    Maciusowicz M; Psuj G
    Sensors (Basel); 2020 Jan; 20(3):. PubMed ID: 32019254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Method for Detecting the Randomness of Barkhausen Noise in a Material Fatigue Test Using Sensitivity and Uncertainty Analysis.
    Hou Y; Li X; Zheng Y; Zhou J; Tan J; Chen X
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32962228
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time-Response-Histogram-Based Feature of Magnetic Barkhausen Noise for Material Characterization Considering Influences of Grain and Grain Boundary under In Situ Tensile Test.
    Liu J; Tian G; Gao B; Zeng K; Xu Y; Liu Q
    Sensors (Basel); 2021 Mar; 21(7):. PubMed ID: 33800570
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of the Magnetocrystalline Anisotropy of Typical Materials Using MBN Technology.
    Wang L; He C; Liu X
    Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34064858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Grinding Burn Detection via Magnetic Barkhausen Noise Analysis Independently of Induction Hardened Depth.
    Gurruchaga K; Lasaosa A; Artetxe I; Martínez-de-Guerenu A
    Materials (Basel); 2023 Mar; 16(5):. PubMed ID: 36903241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface Decarburization Depth Detection in Rods of 60Si2Mn Steel with Magnetic Barkhausen Noise Technique.
    Li P; Wang X; Ding D; Gao Z; Fang W; Zhang C; He C; Liu X
    Sensors (Basel); 2023 Jan; 23(1):. PubMed ID: 36617102
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of Grain Oriented SiFe Steels Based on Imaging the Instantaneous Dynamics of Magnetic Barkhausen Noise Using Short-Time Fourier Transform and Deep Convolutional Neural Network.
    Maciusowicz M; Psuj G; Kochmański P
    Materials (Basel); 2021 Dec; 15(1):. PubMed ID: 35009269
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetic Barkhausen Noise Transient Analysis for Microstructure Evolution Characterization with Tensile Stress in Elastic and Plastic Status.
    Liu J; Tian G; Gao B; Zeng K; Liu Q; Zheng Y
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960403
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnetic Measurement of Zn Layer Heterogeneity on the Flange of the Steel Road Barrier.
    Pitoňák M; Ondruš J; Minárik P; Kubjatko T; Neslušan M
    Materials (Basel); 2022 Mar; 15(5):. PubMed ID: 35269130
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of Thermal Damage Impact on Microstructure and Properties of Carburized AISI 9310 Gear Steel Grade by Destructive and Non-Destructive Testing Methods.
    Dychtoń K; Gradzik A; Kolek Ł; Raga K
    Materials (Basel); 2021 Sep; 14(18):. PubMed ID: 34576500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermally affected characterization region by Barkhausen noise.
    Zergoug M; Boucherrou N; Haddad A; Benchaala A; Moulti B; Tahraoui H; Sellidj F; Hammouda A
    Ultrasonics; 2000 Jul; 37(10):703-7. PubMed ID: 10950355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Short-Time Fatigue Life Estimation for Heat Treated Low Carbon Steels by Applying Electrical Resistance and Magnetic Barkhausen Noise.
    Wu H; Ziman JA; Raghuraman SR; Nebel JE; Weber F; Starke P
    Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614371
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurement of the rate of transformation induced plasticity in TRIP steel by the use of Barkhausen noise emission as a function of plastic straining.
    Neslušan M; Pitoňák M; Čapek J; Kejzlar P; Trško L; Zgútová K; Slota J
    ISA Trans; 2022 Jun; 125():318-329. PubMed ID: 34389176
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of Time-Dependent Multispectral Representation of Magnetic Barkhausen Noise Signals for the Needs of Non-Destructive Evaluation of Steel Materials.
    Maciusowicz M; Psuj G
    Sensors (Basel); 2019 Mar; 19(6):. PubMed ID: 30909632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of Magnetic Anisotropy and Non-Homogeneity of S235 Ship Structure Steel after Plastic Straining by the Use of Barkhausen Noise.
    Jurkovič M; Kalina T; Zgútová K; Neslušan M; Pitoňák M
    Materials (Basel); 2020 Oct; 13(20):. PubMed ID: 33076364
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of Tendon Prestressing after Long-Term Service via the Barkhausen Noise Technique.
    Neslušan M; Bahleda F; Moravčík M; Zgútová K; Pastorek F
    Materials (Basel); 2019 Oct; 12(20):. PubMed ID: 31652504
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Statistics of avalanches with relaxation and Barkhausen noise: a solvable model.
    Dobrinevski A; Le Doussal P; Wiese KJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):032106. PubMed ID: 24125213
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of Magnetic Nondestructive Measurement Methods for Determination of the Degradation of Reactor Pressure Vessel Steel.
    Vértesy G; Gasparics A; Szenthe I; Rabung M; Kopp M; Griffin JM
    Materials (Basel); 2021 Sep; 14(18):. PubMed ID: 34576479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.