These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 33573008)

  • 1. Temperature Dependence of Carrier Extraction Processes in GaSb/AlGaAs Quantum Nanostructure Intermediate-Band Solar Cells.
    Shoji Y; Tamaki R; Okada Y
    Nanomaterials (Basel); 2021 Jan; 11(2):. PubMed ID: 33573008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical characteristics of type-II hexagonal-shaped GaSb quantum dots on GaAs synthesized using nanowire self-growth mechanism from Ga metal droplet.
    Baik M; Kyhm JH; Kang HK; Jeong KS; Kim JS; Cho MH; Song JD
    Sci Rep; 2021 Apr; 11(1):7699. PubMed ID: 33833327
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The structural and optical properties of GaSb/InGaAs type-II quantum dots grown on InP (100) substrate.
    Shuhui Z; Lu W; Zhenwu S; Yanxiang C; Haitao T; Huaiju G; Haiqiang J; Wenxin W; Hong C; Liancheng Z
    Nanoscale Res Lett; 2012 Jan; 7(1):87. PubMed ID: 22277096
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Type-II GaSb quantum dots grown on InAlAs/InP (001) by droplet epitaxy.
    Yuan Q; Liang B; Luo S; Wang Y; Yan Q; Wang S; Fu G; Mazur YI; Maidaniuk Y; Ware ME; Salamo GJ
    Nanotechnology; 2020 Jul; 31(31):315701. PubMed ID: 32303015
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An investigation of exciton behavior in type-II self-assembled GaSb/GaAs quantum dots.
    Qiu F; Qiu W; Li Y; Wang X; Zhang Y; Zhou X; Lv Y; Sun Y; Deng H; Hu S; Dai N; Wang C; Yang Y; Zhuang Q; Hayne M; Krier A
    Nanotechnology; 2016 Feb; 27(6):065602. PubMed ID: 26684716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GaSb/GaAs type-II quantum dots grown by droplet epitaxy.
    Liang B; Lin A; Pavarelli N; Reyner C; Tatebayashi J; Nunna K; He J; Ochalski TJ; Huyet G; Huffaker DL
    Nanotechnology; 2009 Nov; 20(45):455604. PubMed ID: 19834245
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of hot-carrier relaxation for realizing ideal quantum-dot intermediate-band solar cells.
    Tex DM; Kamiya I; Kanemitsu Y
    Sci Rep; 2014 Feb; 4():4125. PubMed ID: 24535195
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morphology and valence band offset of GaSb quantum dots grown on GaP(001) and their evolution upon capping.
    Desplanque L; Coinon C; Troadec D; Ruterana P; Patriarche G; Bonato L; Bimberg D; Wallart X
    Nanotechnology; 2017 Jun; 28(22):225601. PubMed ID: 28480873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Demonstration of a GaSb/GaAs Quantum Dot Intermediate Band Solar Cell Operating at Maximum Power Point.
    Ramiro I; Villa J; Hwang J; Martin AJ; Millunchick J; Phillips J; Martí A
    Phys Rev Lett; 2020 Dec; 125(24):247703. PubMed ID: 33412043
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum Dot Based Solar Cells: Role of Nanoarchitectures, Perovskite Quantum Dots, and Charge-Transporting Layers.
    Shaikh JS; Shaikh NS; Mali SS; Patil JV; Beknalkar SA; Patil AP; Tarwal NL; Kanjanaboos P; Hong CK; Patil PS
    ChemSusChem; 2019 Nov; 12(21):4724-4753. PubMed ID: 31347771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anomalous behavior of In adatoms during droplet epitaxy on the AlGaAs surfaces.
    Balakirev SV; Solodovnik MS; Eremenko MM; Chernenko NE; Ageev OA
    Nanotechnology; 2020 Nov; 31(48):485604. PubMed ID: 32931474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solution-processed intermediate-band solar cells with lead sulfide quantum dots and lead halide perovskites.
    Hosokawa H; Tamaki R; Sawada T; Okonogi A; Sato H; Ogomi Y; Hayase S; Okada Y; Yano T
    Nat Commun; 2019 Jan; 10(1):43. PubMed ID: 30626874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Semiconductor quantum dot-sensitized solar cells.
    Tian J; Cao G
    Nano Rev; 2013 Oct; 4():. PubMed ID: 24191178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature and excitation density dependent photoluminescence of sputtering-induced GaAs/AlGaAs quantum dots.
    Wang Y; Yoon SF; Liu CY; Ngo CY; Ahn J
    Nanotechnology; 2008 Jan; 19(1):015602. PubMed ID: 21730537
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tunable Mid-Infrared Interband Emission from Tensile-Strained InGaAs Quantum Dots.
    Vallejo KD; Cabrera-Perdomo CI; Garrett TA; Drake MD; Liang B; Grossklaus KA; Simmonds PJ
    ACS Nano; 2023 Feb; 17(3):2318-2327. PubMed ID: 36649642
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Internal quantum efficiency of AlGaN/AlN quantum dot superlattices for electron-pumped ultraviolet sources.
    Harikumar A; Donatini F; Bougerol C; Bellet-Amalric E; Thai QM; Dujardin C; Dimkou I; Purcell ST; Monroy E
    Nanotechnology; 2020 Dec; 31(50):505205. PubMed ID: 32698175
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theory of plasmonic quantum-dot-based intermediate band solar cells.
    Foroutan S; Baghban H
    Appl Opt; 2016 May; 55(13):3405-12. PubMed ID: 27140348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective-Area Growth of Vertical InGaAs/GaSb Core-Shell Nanowires on Silicon and Dual Switching Properties.
    Gamo H; Lian C; Motohisa J; Tomioka K
    ACS Nano; 2023 Sep; 17(18):18346-18351. PubMed ID: 37615535
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved performance of quantum dot solar cells by type-II InAs/GaAsSb structure with moderate Sb composition.
    Wang S; Wang S; Yang X; Lv Z; Chai H; Meng L; Yang T
    Heliyon; 2023 Sep; 9(9):e20005. PubMed ID: 37810090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature-Enhanced Exciton Emission from GaAs Cone-Shell Quantum Dots.
    Heyn C; Ranasinghe L; Deneke K; Alshaikh A; Blick RH
    Nanomaterials (Basel); 2023 Dec; 13(24):. PubMed ID: 38133018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.