These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
259 related articles for article (PubMed ID: 33573166)
1. Combination of Self-Healing Butyl Rubber and Natural Rubber Composites for Improving the Stability. Chumnum K; Kalkornsurapranee E; Johns J; Sengloyluan K; Nakaramontri Y Polymers (Basel); 2021 Jan; 13(3):. PubMed ID: 33573166 [TBL] [Abstract][Full Text] [Related]
2. Increase in Properties and Self-Healing Ability of Conductive Butyl Rubber/Epoxidized Natural Rubber Composites by Using Bis(triethoxysilylpropyl)tetrasulfide Coupling Agent. Luangchuang P; Chumnum K; Kalkornsurapranee E; Nakaramontri Y Polymers (Basel); 2023 Jan; 15(3):. PubMed ID: 36771847 [TBL] [Abstract][Full Text] [Related]
3. Effects of Modifying Agent and Conductive Hybrid Filler on Butyl Rubber Properties: Mechanical, Thermo-Mechanical, Dynamical and Re-Crosslinking Properties. Luangchuang P; Sornanankul T; Nakaramontri Y Polymers (Basel); 2023 Oct; 15(19):. PubMed ID: 37836072 [TBL] [Abstract][Full Text] [Related]
4. Phlogopite-Reinforced Natural Rubber (NR)/Ethylene-Propylene-Diene Monomer Rubber (EPDM) Composites with Aminosilane Compatibilizer. Lee SH; Park SY; Chung KH; Jang KS Polymers (Basel); 2021 Jul; 13(14):. PubMed ID: 34301075 [TBL] [Abstract][Full Text] [Related]
5. Rapid formation of carbon nanotubes-natural rubber films cured with glutaraldehyde for reducing percolation threshold concentration. Promsung R; Chuaybamrung A; Georgopoulou A; Clemens F; Nakaramontri Y; Johns J; Lehman N; Songtipya L; Kalkornsurapranee E Discov Nano; 2024 Feb; 19(1):30. PubMed ID: 38372836 [TBL] [Abstract][Full Text] [Related]
6. Improved Heat Dissipation of NR/SBR-Based Tire Tread Compounds via Hybrid Fillers of Multi-Walled Carbon Nanotube and Carbon Black. Kodal M; Yazıcı Çakır N; Yıldırım R; Karakaya N; Özkoç G Polymers (Basel); 2023 Nov; 15(23):. PubMed ID: 38231911 [TBL] [Abstract][Full Text] [Related]
7. Titanium carbide ceramic nanocrystals to enhance the physicochemical properties of natural rubber composites. Jayasinghe JMARB; De Silva RT; de Silva KMN; de Silva RM; Silva VA RSC Adv; 2020 May; 10(33):19290-19299. PubMed ID: 35515424 [TBL] [Abstract][Full Text] [Related]
8. Preparation and Properties of Rubber Blends for High-Damping-Isolation Bearings. Lei T; Zhang YW; Kuang DL; Yang YR Polymers (Basel); 2019 Aug; 11(8):. PubMed ID: 31434307 [TBL] [Abstract][Full Text] [Related]
9. Viscoelastic and self-healing behavior of silica filled ionically modified poly(isobutylene- Sallat A; Das A; Schaber J; Scheler U; Bhagavatheswaran ES; Stöckelhuber KW; Heinrich G; Voit B; Böhme F RSC Adv; 2018 Jul; 8(47):26793-26803. PubMed ID: 35541047 [TBL] [Abstract][Full Text] [Related]
11. Green tire technology: Effect of rice husk derived nanocellulose (RHNC) in replacing carbon black (CB) in natural rubber (NR) compounding. Dominic M; Joseph R; Sabura Begum PM; Kanoth BP; Chandra J; Thomas S Carbohydr Polym; 2020 Feb; 230():115620. PubMed ID: 31887961 [TBL] [Abstract][Full Text] [Related]
12. Tuning the Curing Efficiency of Conventional Accelerated Sulfur System for Tailoring the Properties of Natural Rubber/Bromobutyl Rubber Blends. Pöschl M; Sathi SG; Stoček R Materials (Basel); 2022 Nov; 15(23):. PubMed ID: 36499962 [TBL] [Abstract][Full Text] [Related]
13. Effect of networked hybridized nanoparticle reinforcement on the thermal conductivity and mechanical properties of natural rubber composites. Jayasinghe JMARB; De Silva RT; de Silva RM; de Silva KMN; Mantilaka MMMGPG; Silva VA RSC Adv; 2019 Jan; 9(2):636-644. PubMed ID: 35517593 [TBL] [Abstract][Full Text] [Related]
14. Effects of Filler Functionalization on Filler-Embedded Natural Rubber/Ethylene-Propylene-Diene Monomer Composites. Lee SH; Park GW; Kim HJ; Chung K; Jang KS Polymers (Basel); 2022 Aug; 14(17):. PubMed ID: 36080577 [TBL] [Abstract][Full Text] [Related]
15. Improving Dispersion of Carbon Nanotubes in Natural Rubber by Using Waterjet-Produced Rubber Powder as a Carrier. Guo X; Guo S; Liu G; Bai L; Liu H; Xu Y; Zhao J; Chai H; Jian X; Guo L; Liu F Polymers (Basel); 2023 Jan; 15(3):. PubMed ID: 36771778 [TBL] [Abstract][Full Text] [Related]
16. Constructing Chemical Interface Layers by Using Ionic Liquid in Graphene Oxide/Rubber Composites to Achieve High-Wear Resistance in Environmental-Friendly Green Tires. Chu L; Kan M; Jerrams S; Zhang R; Xu Z; Liu L; Wen S; Zhang L ACS Appl Mater Interfaces; 2022 Feb; 14(4):5995-6004. PubMed ID: 35040636 [TBL] [Abstract][Full Text] [Related]
17. Bis(trifluoromethylsulfonyl)imide Ionic Liquids Applied for Fine-Tuning the Cure Characteristics and Performance of Natural Rubber Composites. Sowińska A; Maciejewska M; Grajewska A Int J Mol Sci; 2021 Apr; 22(7):. PubMed ID: 33916131 [TBL] [Abstract][Full Text] [Related]
18. Constructing Oriented Two-Dimensional Large-Sized Modified Graphene Oxide Barrier Walls in Brominated Butyl Rubber to Achieve Excellent Gas Barrier Properties. Yang S; Wu H; Li C; Xiong Y; Guo S ACS Appl Mater Interfaces; 2020 Jan; 12(3):3976-3983. PubMed ID: 31869207 [TBL] [Abstract][Full Text] [Related]
19. Sustainable Epoxidized Guayule Natural Rubber, Blends and Composites with Improved Oil Resistance and Greater Stiffness. Ren X; Barrera CS; Tardiff JL; Cornish K Materials (Basel); 2022 Jun; 15(11):. PubMed ID: 35683243 [TBL] [Abstract][Full Text] [Related]
20. Incorporating the recovered carbon black produced in an industrial-scale waste tire pyrolysis plant into a natural rubber formulation. Urrego-Yepes W; Cardona-Uribe N; Vargas-Isaza CA; Martínez JD J Environ Manage; 2021 Jun; 287():112292. PubMed ID: 33690014 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]