These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 33573246)
1. Defects in Electron Beam Melted Ti-6Al-4V: Fatigue Life Prediction Using Experimental Data and Extreme Value Statistics. Sandell V; Hansson T; Roychowdhury S; Månsson T; Delin M; Åkerfeldt P; Antti ML Materials (Basel); 2021 Jan; 14(3):. PubMed ID: 33573246 [TBL] [Abstract][Full Text] [Related]
2. Fatigue Crack Growth of Electron Beam Melted Ti-6Al-4V in High-Pressure Hydrogen. Neikter M; Colliander M; de Andrade Schwerz C; Hansson T; Åkerfeldt P; Pederson R; Antti ML Materials (Basel); 2020 Mar; 13(6):. PubMed ID: 32178389 [TBL] [Abstract][Full Text] [Related]
3. Low-Cycle Fatigue Behavior of Wire and Arc Additively Manufactured Ti-6Al-4V Material. Springer S; Leitner M; Gruber T; Oberwinkler B; Lasnik M; Grün F Materials (Basel); 2023 Sep; 16(18):. PubMed ID: 37763361 [TBL] [Abstract][Full Text] [Related]
4. Modeling the Role of Epitaxial Grain Structure of the Prior β Phase and Associated Fiber Texture on the Strength Characteristics of Ti-6Al-4V Produced via Additive Manufacturing. Sangid MD; Nicolas A; Kapoor K; Fodran E; Madsen J Materials (Basel); 2020 May; 13(10):. PubMed ID: 32429559 [TBL] [Abstract][Full Text] [Related]
5. Investigation of the mechanisms by which hot isostatic pressing improves the fatigue performance of powder bed fused Ti-6Al-4V. Li P; Warner DH; Pegues JW; Roach MD; Shamsaei N; Phan N Int J Fatigue; 2019 Mar; 120():342-352. PubMed ID: 31595096 [TBL] [Abstract][Full Text] [Related]
6. Monotonic and Fatigue Behavior of EBM Manufactured Ti-6Al-4V Solid Samples: Experimental, Analytical and Numerical Investigations. Radlof W; Benz C; Heyer H; Sander M Materials (Basel); 2020 Oct; 13(20):. PubMed ID: 33080913 [TBL] [Abstract][Full Text] [Related]
7. Fatigue testing of electron beam-melted Ti-6Al-4V ELI alloy for dental implants. Joshi GV; Duan Y; Neidigh J; Koike M; Chahine G; Kovacevic R; Okabe T; Griggs JA J Biomed Mater Res B Appl Biomater; 2013 Jan; 101(1):124-30. PubMed ID: 23077086 [TBL] [Abstract][Full Text] [Related]
8. 3D inkjet printing of biomaterials with strength reliability and cytocompatibility: Quantitative process strategy for Ti-6Al-4V. Barui S; Panda AK; Naskar S; Kuppuraj R; Basu S; Basu B Biomaterials; 2019 Aug; 213():119212. PubMed ID: 31152931 [TBL] [Abstract][Full Text] [Related]
9. Influence of Manufacturing Parameters on Microstructure and Hydrogen Sorption Behavior of Electron Beam Melted Titanium Ti-6Al-4V Alloy. Pushilina N; Syrtanov M; Kashkarov E; Murashkina T; Kudiiarov V; Laptev R; Lider A; Koptyug A Materials (Basel); 2018 May; 11(5):. PubMed ID: 29747471 [TBL] [Abstract][Full Text] [Related]
10. Fatigue Failure from Inner Surfaces of Additive Manufactured Ti-6Al-4V Components. de Jesus J; Martins Ferreira JA; Borrego L; Costa JD; Capela C Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33562437 [TBL] [Abstract][Full Text] [Related]
11. Effects of Process Parameters and Process Defects on the Flexural Fatigue Life of Ti-6Al-4V Fabricated by Laser Powder Bed Fusion. Ramirez B; Banuelos C; De La Cruz A; Nabil ST; Arrieta E; Murr LE; Wicker RB; Medina F Materials (Basel); 2024 Sep; 17(18):. PubMed ID: 39336289 [TBL] [Abstract][Full Text] [Related]
12. Effect of Precrack Configuration and Lack-of-Fusion on the Elastic-Plastic Fracture Toughness of Additively Manufactured Ti-6Al-4V parts. Lucon E; Benzing J; Hrabe N Mater Perform Charact; 2020; 9(5):. PubMed ID: 33614956 [TBL] [Abstract][Full Text] [Related]
13. Modelling the Variability and the Anisotropic Behaviour of Crack Growth in SLM Ti-6Al-4V. Jones R; Rans C; Iliopoulos AP; Michopoulos JG; Phan N; Peng D Materials (Basel); 2021 Mar; 14(6):. PubMed ID: 33805756 [TBL] [Abstract][Full Text] [Related]
14. Importance of Build Design Parameters to the Fatigue Strength of Ti6Al4V in Electron Beam Melting Additive Manufacturing. Ghods S; Schur R; Montelione A; Schleusener R; Arola DD; Ramulu M Materials (Basel); 2022 Aug; 15(16):. PubMed ID: 36013755 [TBL] [Abstract][Full Text] [Related]
15. Data related to architectural bone parameters and the relationship to Ti lattice design for powder bed fusion additive manufacturing. McGregor M; Patel S; McLachlin S; Vlasea M Data Brief; 2021 Dec; 39():107633. PubMed ID: 34917699 [TBL] [Abstract][Full Text] [Related]
16. Surface Finishing of Additive Manufactured Ti-6Al-4V Alloy: A Comparison between Abrasive Fluidized Bed and Laser Finishing. Atzeni E; Genna S; Menna E; Rubino G; Salmi A; Trovalusci F Materials (Basel); 2021 Sep; 14(18):. PubMed ID: 34576590 [TBL] [Abstract][Full Text] [Related]
17. Characterization of Composite Powder Feedstock from Powder Bed Fusion Additive Manufacturing Perspective. Fereiduni E; Ghasemi A; Elbestawi M Materials (Basel); 2019 Nov; 12(22):. PubMed ID: 31703412 [TBL] [Abstract][Full Text] [Related]
18. Predictive Simulation of Process Windows for Powder Bed Fusion Additive Manufacturing: Influence of the Powder Bulk Density. Rausch AM; Küng VE; Pobel C; Markl M; Körner C Materials (Basel); 2017 Sep; 10(10):. PubMed ID: 28937633 [TBL] [Abstract][Full Text] [Related]
19. Effect of powder oxidation on the impact toughness of electron beam melt Ti-6Al-4V. Grell WA; Solis-Ramos E; Clark E; Lucon E; Garboczi EJ; Predecki PK; Loftus Z; Kumosa M Acta Mater; 2017 Oct; 17():. PubMed ID: 38496266 [TBL] [Abstract][Full Text] [Related]
20. Corrosion and Corrosion Fatigue Properties of Additively Manufactured Magnesium Alloy WE43 in Comparison to Titanium Alloy Ti-6Al-4V in Physiological Environment. Wegner N; Kotzem D; Wessarges Y; Emminghaus N; Hoff C; Tenkamp J; Hermsdorf J; Overmeyer L; Walther F Materials (Basel); 2019 Sep; 12(18):. PubMed ID: 31500239 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]