These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 33573266)

  • 21. DLSSAffinity: protein-ligand binding affinity prediction
    Wang H; Liu H; Ning S; Zeng C; Zhao Y
    Phys Chem Chem Phys; 2022 May; 24(17):10124-10133. PubMed ID: 35416807
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development and evaluation of a deep learning model for protein-ligand binding affinity prediction.
    Stepniewska-Dziubinska MM; Zielenkiewicz P; Siedlecki P
    Bioinformatics; 2018 Nov; 34(21):3666-3674. PubMed ID: 29757353
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of data quality and quantity on deep learning for protein-ligand binding affinity prediction.
    Fan FJ; Shi Y
    Bioorg Med Chem; 2022 Oct; 72():117003. PubMed ID: 36103795
    [TBL] [Abstract][Full Text] [Related]  

  • 24. MDeePred: novel multi-channel protein featurization for deep learning-based binding affinity prediction in drug discovery.
    Rifaioglu AS; Cetin Atalay R; Cansen Kahraman D; Doğan T; Martin M; Atalay V
    Bioinformatics; 2021 May; 37(5):693-704. PubMed ID: 33067636
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multi-PLI: interpretable multi-task deep learning model for unifying protein-ligand interaction datasets.
    Hu F; Jiang J; Wang D; Zhu M; Yin P
    J Cheminform; 2021 Apr; 13(1):30. PubMed ID: 33858485
    [TBL] [Abstract][Full Text] [Related]  

  • 26. ResBiGAAT: Residual Bi-GRU with attention for protein-ligand binding affinity prediction.
    Aly Abdelkader G; Ngnamsie Njimbouom S; Oh TJ; Kim JD
    Comput Biol Chem; 2023 Dec; 107():107969. PubMed ID: 37866117
    [TBL] [Abstract][Full Text] [Related]  

  • 27. DNN-Dom: predicting protein domain boundary from sequence alone by deep neural network.
    Shi Q; Chen W; Huang S; Jin F; Dong Y; Wang Y; Xue Z
    Bioinformatics; 2019 Dec; 35(24):5128-5136. PubMed ID: 31197306
    [TBL] [Abstract][Full Text] [Related]  

  • 28. InteractionGraphNet: A Novel and Efficient Deep Graph Representation Learning Framework for Accurate Protein-Ligand Interaction Predictions.
    Jiang D; Hsieh CY; Wu Z; Kang Y; Wang J; Wang E; Liao B; Shen C; Xu L; Wu J; Cao D; Hou T
    J Med Chem; 2021 Dec; 64(24):18209-18232. PubMed ID: 34878785
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Significance of Data Selection in Deep Learning for Reliable Binding Mode Prediction of Ligands in the Active Site of CYP3A4.
    Sato A; Tanimura N; Honma T; Konagaya A
    Chem Pharm Bull (Tokyo); 2019 Nov; 67(11):1183-1190. PubMed ID: 31423003
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CAPLA: improved prediction of protein-ligand binding affinity by a deep learning approach based on a cross-attention mechanism.
    Jin Z; Wu T; Chen T; Pan D; Wang X; Xie J; Quan L; Lyu Q
    Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36688724
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Binding affinity prediction for protein-ligand complex using deep attention mechanism based on intermolecular interactions.
    Seo S; Choi J; Park S; Ahn J
    BMC Bioinformatics; 2021 Nov; 22(1):542. PubMed ID: 34749664
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Machine Learning Approach for the Discovery of Ligand-Specific Functional Mechanisms of GPCRs.
    Plante A; Shore DM; Morra G; Khelashvili G; Weinstein H
    Molecules; 2019 Jun; 24(11):. PubMed ID: 31159491
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Prediction of protein-ligand interactions from paired protein sequence motifs and ligand substructures.
    Greenside P; Hillenmeyer M; Kundaje A
    Pac Symp Biocomput; 2018; 23():20-31. PubMed ID: 29218866
    [TBL] [Abstract][Full Text] [Related]  

  • 34. RNA-protein binding motifs mining with a new hybrid deep learning based cross-domain knowledge integration approach.
    Pan X; Shen HB
    BMC Bioinformatics; 2017 Feb; 18(1):136. PubMed ID: 28245811
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Deep neural networks for human microRNA precursor detection.
    Zheng X; Fu X; Wang K; Wang M
    BMC Bioinformatics; 2020 Jan; 21(1):17. PubMed ID: 31931701
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fingerprinting Interactions between Proteins and Ligands for Facilitating Machine Learning in Drug Discovery.
    Li Z; Huang R; Xia M; Patterson TA; Hong H
    Biomolecules; 2024 Jan; 14(1):. PubMed ID: 38254672
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quantitative chemogenomics: machine-learning models of protein-ligand interaction.
    Andersson CR; Gustafsson MG; Strömbergsson H
    Curr Top Med Chem; 2011; 11(15):1978-93. PubMed ID: 21470169
    [TBL] [Abstract][Full Text] [Related]  

  • 38. TransformerCPI: improving compound-protein interaction prediction by sequence-based deep learning with self-attention mechanism and label reversal experiments.
    Chen L; Tan X; Wang D; Zhong F; Liu X; Yang T; Luo X; Chen K; Jiang H; Zheng M
    Bioinformatics; 2020 Aug; 36(16):4406-4414. PubMed ID: 32428219
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular interaction fingerprint approaches for GPCR drug discovery.
    Vass M; Kooistra AJ; Ritschel T; Leurs R; de Esch IJ; de Graaf C
    Curr Opin Pharmacol; 2016 Oct; 30():59-68. PubMed ID: 27479316
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effectively Identifying Compound-Protein Interactions by Learning from Positive and Unlabeled Examples.
    Cheng Z; Zhou S; Wang Y; Liu H; Guan J; Chen YP
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(6):1832-1843. PubMed ID: 28113437
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.