BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 33573347)

  • 21. Support Vector Machine Classifiers Show High Generalizability in Automatic Fall Detection in Older Adults.
    Alizadeh J; Bogdan M; Classen J; Fricke C
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770473
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Covariance matrix based fall detection from multiple wearable sensors.
    Boutellaa E; Kerdjidj O; Ghanem K
    J Biomed Inform; 2019 Jun; 94():103189. PubMed ID: 31029654
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Feasibility Study of the Use of Smartwatches in Wearable Fall Detection Systems.
    González-Cañete FJ; Casilari E
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33807104
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Feature selection for elderly faller classification based on wearable sensors.
    Howcroft J; Kofman J; Lemaire ED
    J Neuroeng Rehabil; 2017 May; 14(1):47. PubMed ID: 28558724
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Selecting Power-Efficient Signal Features for a Low-Power Fall Detector.
    Wang C; Redmond SJ; Lu W; Stevens MC; Lord SR; Lovell NH
    IEEE Trans Biomed Eng; 2017 Nov; 64(11):2729-2736. PubMed ID: 28212076
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Analysis of Public Datasets for Wearable Fall Detection Systems.
    Casilari E; Santoyo-Ramón JA; Cano-García JM
    Sensors (Basel); 2017 Jun; 17(7):. PubMed ID: 28653991
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multiphase Identification Algorithm for Fall Recording Systems Using a Single Wearable Inertial Sensor.
    Hsieh CY; Huang HY; Liu KC; Liu CP; Chan CT; Hsu SJ
    Sensors (Basel); 2021 May; 21(9):. PubMed ID: 34068804
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An Event-Triggered Machine Learning Approach for Accelerometer-Based Fall Detection.
    Putra IPES; Brusey J; Gaura E; Vesilo R
    Sensors (Basel); 2017 Dec; 18(1):. PubMed ID: 29271895
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Detection of Gait Abnormalities for Fall Risk Assessment Using Wrist-Worn Inertial Sensors and Deep Learning.
    Kiprijanovska I; Gjoreski H; Gams M
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32961750
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Wearable airbag technology and machine learned models to mitigate falls after stroke.
    Botonis OK; Harari Y; Embry KR; Mummidisetty CK; Riopelle D; Giffhorn M; Albert MV; Heike V; Jayaraman A
    J Neuroeng Rehabil; 2022 Jun; 19(1):60. PubMed ID: 35715823
    [TBL] [Abstract][Full Text] [Related]  

  • 31. How Accurately Can Your Wrist Device Recognize Daily Activities and Detect Falls?
    Gjoreski M; Gjoreski H; Luštrek M; Gams M
    Sensors (Basel); 2016 Jun; 16(6):. PubMed ID: 27258282
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An Analysis on Sensor Locations of the Human Body for Wearable Fall Detection Devices: Principles and Practice.
    Özdemir AT
    Sensors (Basel); 2016 Jul; 16(8):. PubMed ID: 27463719
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Deep Learning for Fall Risk Assessment With Inertial Sensors: Utilizing Domain Knowledge in Spatio-Temporal Gait Parameters.
    Tunca C; Salur G; Ersoy C
    IEEE J Biomed Health Inform; 2020 Jul; 24(7):1994-2005. PubMed ID: 31831454
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Event-Centered Data Segmentation in Accelerometer-Based Fall Detection Algorithms.
    Šeketa G; Pavlaković L; Džaja D; Lacković I; Magjarević R
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34202820
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Accelerometer-Based Fall Detection Using Machine Learning: Training and Testing on Real-World Falls.
    Palmerini L; Klenk J; Becker C; Chiari L
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33202738
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Extracting aerobic system dynamics during unsupervised activities of daily living using wearable sensor machine learning models.
    Beltrame T; Amelard R; Wong A; Hughson RL
    J Appl Physiol (1985); 2018 Feb; 124(2):473-481. PubMed ID: 28596271
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An elderly fall detection using a wrist-worn accelerometer and barometer.
    Jatesiktat P; Wei Tech Ang
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():125-130. PubMed ID: 29059826
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Context-aware fall detection using inertial sensors and time-of-flight transceivers.
    Shastry MC; Asgari M; Wan EA; Leitschuh J; Preiser N; Folsom J; Condon J; Cameron M; Jacobs PG
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():570-573. PubMed ID: 28268395
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reading from the Black Box: What Sensors Tell Us about Resting and Recovery after Real-World Falls.
    Schwickert L; Klenk J; Zijlstra W; Forst-Gill M; Sczuka K; Helbostad JL; Chiari L; Aminian K; Todd C; Becker C
    Gerontology; 2018; 64(1):90-95. PubMed ID: 28848150
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Automated Detection of Multidirectional Compensatory Balance Reactions: A Step Towards Tracking Naturally Occurring Near Falls.
    Nouredanesh M; Gordt K; Schwenk M; Tung J
    IEEE Trans Neural Syst Rehabil Eng; 2020 Feb; 28(2):478-487. PubMed ID: 31794400
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.