These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 33573379)

  • 1. Metal-Immobilized Micellar Aggregates of a Block Copolymer from a Mixed Solvent for a SERS-Active Sensing Substrate and Versatile Dip Catalysis.
    Daripa S; Verma R; Guin D; Chakraborty C; Awasthi K; Kuila BK
    Langmuir; 2021 Feb; 37(7):2445-2456. PubMed ID: 33573379
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A highly efficient and extensively reusable "dip catalyst" based on a silver-nanoparticle-embedded polymer thin film.
    Hariprasad E; Radhakrishnan TP
    Chemistry; 2010 Dec; 16(48):14378-84. PubMed ID: 21031369
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Facile synthesis of palladium nanoparticles immobilized on magnetic biodegradable microcapsules used as effective and recyclable catalyst in Suzuki-Miyaura reaction and p-nitrophenol reduction.
    Baran T; Nasrollahzadeh M
    Carbohydr Polym; 2019 Oct; 222():115029. PubMed ID: 31320097
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Morphology-Controlled Fabrication of Large-Scale Dendritic Silver Nanostructures for Catalysis and SERS Applications.
    Cheng ZQ; Li ZW; Xu JH; Yao R; Li ZL; Liang S; Cheng GL; Zhou YH; Luo X; Zhong J
    Nanoscale Res Lett; 2019 Mar; 14(1):89. PubMed ID: 30868364
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ag Nanoparticles Decorated Cactus-Like Ag Dendrites/Si Nanoneedles as Highly Efficient 3D Surface-Enhanced Raman Scattering Substrates toward Sensitive Sensing.
    Huang J; Ma D; Chen F; Bai M; Xu K; Zhao Y
    Anal Chem; 2015 Oct; 87(20):10527-34. PubMed ID: 26406111
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ag nanoparticle ink coupled with graphene oxide cellulose paper: a flexible and tunable SERS sensing platform.
    Lv P; Chen Z; Ma Z; Mao J; Han B; Han D; Zhang YL
    Opt Lett; 2020 Aug; 45(15):4208-4211. PubMed ID: 32735260
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Zinc oxide/silver nanoarrays as reusable SERS substrates with controllable 'hot-spots' for highly reproducible molecular sensing.
    Kandjani AE; Mohammadtaheri M; Thakkar A; Bhargava SK; Bansal V
    J Colloid Interface Sci; 2014 Dec; 436():251-7. PubMed ID: 25278363
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultra-small rhenium nanoparticles immobilized on DNA scaffolds: An excellent material for surface enhanced Raman scattering and catalysis studies.
    Anantharaj S; Sakthikumar K; Elangovan A; Ravi G; Karthik T; Kundu S
    J Colloid Interface Sci; 2016 Dec; 483():360-373. PubMed ID: 27571687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ synthesis of silver nanoparticle decorated vertical nanowalls in a microfluidic device for ultrasensitive in-channel SERS sensing.
    Parisi J; Su L; Lei Y
    Lab Chip; 2013 Apr; 13(8):1501-8. PubMed ID: 23459704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MoS
    Majdoub M; Amedlous A; Anfar Z; Moussaoui O
    Environ Sci Pollut Res Int; 2021 Dec; 28(45):64674-64686. PubMed ID: 34313935
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoporous Silver Film Fabricated by Oxygen Plasma: A Facile Approach for SERS Substrates.
    Ma C; Trujillo MJ; Camden JP
    ACS Appl Mater Interfaces; 2016 Sep; 8(36):23978-84. PubMed ID: 27551811
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D aluminum/silver hierarchical nanostructure with large areas of dense hot spots for surface-enhanced raman scattering.
    Zhao N; Li H; Xie Y; Feng Z; Wang Z; Yang Z; Yan X; Wang W; Tian C; Yu H
    Electrophoresis; 2019 Dec; 40(23-24):3123-3131. PubMed ID: 31576580
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silicon nanohybrid-based surface-enhanced Raman scattering sensors.
    Wang H; Jiang X; Lee ST; He Y
    Small; 2014 Nov; 10(22):4455-68. PubMed ID: 25243935
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glucose oxidase probe as a surface-enhanced Raman scattering sensor for glucose.
    Qi G; Wang Y; Zhang B; Sun D; Fu C; Xu W; Xu S
    Anal Bioanal Chem; 2016 Oct; 408(26):7513-20. PubMed ID: 27518716
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facile Decoration of Polyaniline Fiber with Ag Nanoparticles for Recyclable SERS Substrate.
    Mondal S; Rana U; Malik S
    ACS Appl Mater Interfaces; 2015 May; 7(19):10457-65. PubMed ID: 25912640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Silver-nanoparticles-loaded chitosan foam as a flexible SERS substrate for active collecting analytes from both solid surface and solution.
    Wang C; Wong KW; Wang Q; Zhou Y; Tang C; Fan M; Mei J; Lau WM
    Talanta; 2019 Jan; 191():241-247. PubMed ID: 30262057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A recyclable silver ions-specific surface-enhanced Raman scattering (SERS) sensor.
    Sun D; Qi G; Cao F; Xu W; Chen Q; Xu S
    Talanta; 2017 Aug; 171():159-165. PubMed ID: 28551122
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Zinc-oxide-silica-silver nanocomposite: Unique one-pot synthesis and enhanced catalytic and anti-bacterial performance.
    Kokate M; Garadkar K; Gole A
    J Colloid Interface Sci; 2016 Dec; 483():249-260. PubMed ID: 27560497
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Core-Shell Nanostructure-Enhanced Raman Spectroscopy for Surface Catalysis.
    Zhang H; Duan S; Radjenovic PM; Tian ZQ; Li JF
    Acc Chem Res; 2020 Apr; 53(4):729-739. PubMed ID: 32031367
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ag-nanoparticle-decorated Ge nanocap arrays protruding from porous anodic aluminum oxide as sensitive and reproducible surface-enhanced Raman scattering substrates.
    Liu J; Meng G; Li X; Huang Z
    Langmuir; 2014 Nov; 30(46):13964-9. PubMed ID: 25361441
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.