These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 33573468)

  • 1. Electrohydrodynamic 3D Printing Scaffolds for Repair of Achilles Tendon Defect in Rats.
    Zhang H; Pei Z; Wang C; Li M; Zhang H; Qu J
    Tissue Eng Part A; 2021 Oct; 27(19-20):1343-1354. PubMed ID: 33573468
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of melt electrohydrodynamic 3D printing for complex microscale poly (ε-caprolactone) scaffolds.
    He J; Xia P; Li D
    Biofabrication; 2016 Aug; 8(3):035008. PubMed ID: 27490377
    [TBL] [Abstract][Full Text] [Related]  

  • 3. iPSC-derived tenocytes seeded on microgrooved 3D printed scaffolds for Achilles tendon regeneration.
    Kaneda G; Chan JL; Castaneda CM; Papalamprou A; Sheyn J; Shelest O; Huang D; Kluser N; Yu V; Ignacio GC; Gertych A; Yoshida R; Metzger MF; Tawackoli W; Vernengo A; Sheyn D
    J Orthop Res; 2023 Oct; 41(10):2205-2220. PubMed ID: 36961351
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pluronic F127 blended polycaprolactone scaffolds via e-jetting for esophageal tissue engineering.
    Wu B; Takeshita N; Wu Y; Vijayavenkataraman S; Ho KY; Lu WF; Fuh JYH
    J Mater Sci Mater Med; 2018 Aug; 29(9):140. PubMed ID: 30120625
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering.
    Hassanajili S; Karami-Pour A; Oryan A; Talaei-Khozani T
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109960. PubMed ID: 31500051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrohydrodynamic 3D printing of microscale poly (ε-caprolactone) scaffolds with multi-walled carbon nanotubes.
    He J; Xu F; Dong R; Guo B; Li D
    Biofabrication; 2017 Jan; 9(1):015007. PubMed ID: 28052044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct E-jet printing of three-dimensional fibrous scaffold for tendon tissue engineering.
    Wu Y; Wang Z; Ying Hsi Fuh J; San Wong Y; Wang W; San Thian E
    J Biomed Mater Res B Appl Biomater; 2017 Apr; 105(3):616-627. PubMed ID: 26671608
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional (3D) printed scaffold and material selection for bone repair.
    Zhang L; Yang G; Johnson BN; Jia X
    Acta Biomater; 2019 Jan; 84():16-33. PubMed ID: 30481607
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrohydrodynamic jet 3D printing of PCL/PVP composite scaffold for cell culture.
    Li K; Wang D; Zhao K; Song K; Liang J
    Talanta; 2020 May; 211():120750. PubMed ID: 32070610
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineered Nanotopography on the Microfibers of 3D-Printed PCL Scaffolds to Modulate Cellular Responses and Establish an
    Jing L; Wang X; Leng B; Zhan N; Liu H; Wang S; Lu Y; Sun J; Huang D
    ACS Appl Bio Mater; 2021 Feb; 4(2):1381-1394. PubMed ID: 35014489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Melt electrohydrodynamic 3D printed poly (ε-caprolactone)/polyethylene glycol/roxithromycin scaffold as a potential anti-infective implant in bone repair.
    Bai J; Wang H; Gao W; Liang F; Wang Z; Zhou Y; Lan X; Chen X; Cai N; Huang W; Tang Y
    Int J Pharm; 2020 Feb; 576():118941. PubMed ID: 31881261
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanically-enhanced three-dimensional scaffold with anisotropic morphology for tendon regeneration.
    Wu Y; Wang Z; Fuh JY; Wong YS; Wang W; Thian ES
    J Mater Sci Mater Med; 2016 Jul; 27(7):115. PubMed ID: 27215211
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication and Biological Activity of 3D-Printed Polycaprolactone/Magnesium Porous Scaffolds for Critical Size Bone Defect Repair.
    Zhao S; Xie K; Guo Y; Tan J; Wu J; Yang Y; Fu P; Wang L; Jiang W; Hao Y
    ACS Biomater Sci Eng; 2020 Sep; 6(9):5120-5131. PubMed ID: 33455263
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrohydrodynamic printing of submicron-microscale hybrid scaffolds with improved cellular adhesion and proliferation behaviors.
    Zhang B; Li S; He J; Lei Q; Wu C; Song A; Zhang C
    Nanotechnology; 2022 Dec; 34(10):. PubMed ID: 36562511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface modification of 3D-printed porous scaffolds via mussel-inspired polydopamine and effective immobilization of rhBMP-2 to promote osteogenic differentiation for bone tissue engineering.
    Lee SJ; Lee D; Yoon TR; Kim HK; Jo HH; Park JS; Lee JH; Kim WD; Kwon IK; Park SA
    Acta Biomater; 2016 Aug; 40():182-191. PubMed ID: 26868173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D printed alendronate-releasing poly(caprolactone) porous scaffolds enhance osteogenic differentiation and bone formation in rat tibial defects.
    Kim SE; Yun YP; Shim KS; Kim HJ; Park K; Song HR
    Biomed Mater; 2016 Sep; 11(5):055005. PubMed ID: 27680282
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chondrogenesis using mesenchymal stem cells and PCL scaffolds.
    Kim HJ; Lee JH; Im GI
    J Biomed Mater Res A; 2010 Feb; 92(2):659-66. PubMed ID: 19235210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An asymmetric chitosan scaffold for tendon tissue engineering: In vitro and in vivo evaluation with rat tendon stem/progenitor cells.
    Chen E; Yang L; Ye C; Zhang W; Ran J; Xue D; Wang Z; Pan Z; Hu Q
    Acta Biomater; 2018 Jun; 73():377-387. PubMed ID: 29678676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of three-dimensional porous scaffolds with controlled filament orientation and large pore size via an improved E-jetting technique.
    Li JL; Cai YL; Guo YL; Fuh JY; Sun J; Hong GS; Lam RN; Wong YS; Wang W; Tay BY; Thian ES
    J Biomed Mater Res B Appl Biomater; 2014 May; 102(4):651-8. PubMed ID: 24155124
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [CYTOCOMPATIBILITY AND PREPARATION OF BONE TISSUE ENGINEERING SCAFFOLD BY COMBINING LOW TEMPERATURE THREE DIMENSIONAL PRINTING AND VACUUM FREEZE-DRYING TECHNIQUES].
    Li D; Zhang Z; Zheng C; Zhao B; Sun K; Nian Z; Zhang X; Li R; Li H
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2016 Mar; 30(3):292-7. PubMed ID: 27281872
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.