These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 33573807)

  • 1. Recent advances in soil microbial fuel cells for soil contaminants remediation.
    Abbas SZ; Rafatullah M
    Chemosphere; 2021 Jun; 272():129691. PubMed ID: 33573807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms and challenges of microbial fuel cells for soil heavy metal(loid)s remediation.
    Gustave W; Yuan Z; Liu F; Chen Z
    Sci Total Environ; 2021 Feb; 756():143865. PubMed ID: 33293085
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microorganisms in sediment microbial fuel cells: Ecological niche, microbial response, and environmental function.
    Yang X; Chen S
    Sci Total Environ; 2021 Feb; 756():144145. PubMed ID: 33303196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioelectrochemical remediation of Cr(VI)/Cd(II)-contaminated soil in bipolar membrane microbial fuel cells.
    Wang H; Zhang H; Zhang X; Li Q; Cheng C; Shen H; Zhang Z
    Environ Res; 2020 Jul; 186():109582. PubMed ID: 32361081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Remediation of contaminated soils by enhanced nanoscale zero valent iron.
    Jiang D; Zeng G; Huang D; Chen M; Zhang C; Huang C; Wan J
    Environ Res; 2018 May; 163():217-227. PubMed ID: 29459304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous enhancement of heavy metal removal and electricity generation in soil microbial fuel cell.
    Zhang J; Cao X; Wang H; Long X; Li X
    Ecotoxicol Environ Saf; 2020 Apr; 192():110314. PubMed ID: 32061983
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbial fuel cell driving electrokinetic remediation of toxic metal contaminated soils.
    Habibul N; Hu Y; Sheng GP
    J Hazard Mater; 2016 Nov; 318():9-14. PubMed ID: 27388419
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing the performance of soil microbial fuel cells by using a bentonite-Fe and Fe
    Yu B; Li Y; Feng L
    J Hazard Mater; 2019 Sep; 377():70-77. PubMed ID: 31151042
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbial fuel cell system: a promising technology for pollutant removal and environmental remediation.
    Wu Q; Jiao S; Ma M; Peng S
    Environ Sci Pollut Res Int; 2020 Mar; 27(7):6749-6764. PubMed ID: 31956948
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Environmental applications of chitosan and its derivatives.
    Yong SK; Shrivastava M; Srivastava P; Kunhikrishnan A; Bolan N
    Rev Environ Contam Toxicol; 2015; 233():1-43. PubMed ID: 25367132
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous Cr(VI) reduction and electricity generation in Plant-Sediment Microbial Fuel Cells (P-SMFCs): Synthesis of non-bonding Co
    Cheng C; Hu Y; Shao S; Yu J; Zhou W; Cheng J; Chen Y; Chen S; Chen J; Zhang L
    Environ Pollut; 2019 Apr; 247():647-657. PubMed ID: 30711820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid and enhanced electrokinetic system for soil remediation from heavy metals and organic matter.
    Hamdi FM; Ganbat N; Altaee A; Samal AK; Ibrar I; Zhou JL; Sharif AO
    J Environ Sci (China); 2025 Jan; 147():424-450. PubMed ID: 39003060
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Remediation of contaminated soils by biotechnology with nanomaterials: bio-behavior, applications, and perspectives.
    Gong X; Huang D; Liu Y; Peng Z; Zeng G; Xu P; Cheng M; Wang R; Wan J
    Crit Rev Biotechnol; 2018 May; 38(3):455-468. PubMed ID: 28903604
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SMFC as a tool for the removal of hydrocarbons and metals in the marine environment: a concise research update.
    Gambino E; Chandrasekhar K; Nastro RA
    Environ Sci Pollut Res Int; 2021 Jun; 28(24):30436-30451. PubMed ID: 33891239
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbial strategies for copper pollution remediation: Mechanistic insights and recent advances.
    Alkhanjaf AAM; Sharma S; Sharma M; Kumar R; Arora NK; Kumar B; Umar A; Baskoutas S; Mukherjee TK
    Environ Pollut; 2024 Apr; 346():123588. PubMed ID: 38401635
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent progresses, challenges, and opportunities of carbon-based materials applied in heavy metal polluted soil remediation.
    Fu T; Zhang B; Gao X; Cui S; Guan CY; Zhang Y; Zhang B; Peng Y
    Sci Total Environ; 2023 Jan; 856(Pt 1):158810. PubMed ID: 36162572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Natural hematite as low-cost auxiliary material for improving soil remediation by in-situ microbial community.
    Zhang C; Wang Q; Qin R; Li Z; Wang Y; Ke Z; Ren G
    Environ Sci Pollut Res Int; 2023 Jul; 30(35):84141-84151. PubMed ID: 37355514
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent advances in soil remediation technology for heavy metal contaminated sites: A critical review.
    Song P; Xu D; Yue J; Ma Y; Dong S; Feng J
    Sci Total Environ; 2022 Sep; 838(Pt 3):156417. PubMed ID: 35662604
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of soil organic matter-mediated electron transfer on heavy metal remediation: Current status and perspectives.
    Kou B; Yuan Y; Zhu X; Ke Y; Wang H; Yu T; Tan W
    Sci Total Environ; 2024 Mar; 917():170451. PubMed ID: 38296063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Remediation of soils contaminated with heavy metals with an emphasis on immobilization technology.
    Derakhshan Nejad Z; Jung MC; Kim KH
    Environ Geochem Health; 2018 Jun; 40(3):927-953. PubMed ID: 28447234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.