BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 33573971)

  • 1. The levels of artificial insemination and missing sire information make genomic selection not always beneficial in meat sheep.
    Raoul J; Elsen JM
    Animal; 2021 Feb; 15(2):100040. PubMed ID: 33573971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Economic evaluation of genomic selection in small ruminants: a sheep meat breeding program.
    Shumbusho F; Raoul J; Astruc JM; Palhiere I; Lemarié S; Fugeray-Scarbel A; Elsen JM
    Animal; 2016 Jun; 10(6):1033-41. PubMed ID: 26446712
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potential benefits of genomic selection on genetic gain of small ruminant breeding programs.
    Shumbusho F; Raoul J; Astruc JM; Palhiere I; Elsen JM
    J Anim Sci; 2013 Aug; 91(8):3644-57. PubMed ID: 23736059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of genomic breeding values for growth, carcass and meat quality traits in a multi-breed sheep population using a HD SNP chip.
    Brito LF; Clarke SM; McEwan JC; Miller SP; Pickering NK; Bain WE; Dodds KG; Sargolzaei M; Schenkel FS
    BMC Genet; 2017 Jan; 18(1):7. PubMed ID: 28122512
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using a very low-density SNP panel for genomic selection in a breeding program for sheep.
    Raoul J; Swan AA; Elsen JM
    Genet Sel Evol; 2017 Oct; 49(1):76. PubMed ID: 29065868
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genotyping strategies of selection candidates in livestock breeding programmes.
    Granleese T; Clark SA; van der Werf JHJ
    J Anim Breed Genet; 2019 Mar; 136(2):91-101. PubMed ID: 30690805
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Invited review: Genomic selection for small ruminants in developed countries: how applicable for the rest of the world?
    Mrode R; Tarekegn GM; Mwacharo JM; Djikeng A
    Animal; 2018 Jul; 12(7):1333-1340. PubMed ID: 29343308
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimizing female allocation to reproductive technologies considering merit, inbreeding and cost in nucleus breeding programmes with genomic selection.
    Granleese T; Clark SA; Kinghorn BP; van der Werf JHJ
    J Anim Breed Genet; 2019 Mar; 136(2):79-90. PubMed ID: 30585664
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimizing the design of small-sized nucleus breeding programs for dairy cattle with minimal performance recording.
    Kariuki CM; Komen H; Kahi AK; van Arendonk JA
    J Dairy Sci; 2014 Dec; 97(12):7963-74. PubMed ID: 25282422
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increased genetic gains in sheep, beef and dairy breeding programs from using female reproductive technologies combined with optimal contribution selection and genomic breeding values.
    Granleese T; Clark SA; Swan AA; van der Werf JH
    Genet Sel Evol; 2015 Sep; 47(1):70. PubMed ID: 26370143
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic and economic effects of the increase in female paternal filiations by parentage assignment in sheep and goat breeding programs.
    Raoul J; Palhière I; Astruc JM; Elsen JM
    J Anim Sci; 2016 Sep; 94(9):3663-3683. PubMed ID: 27898915
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genomic selection strategies to improve maternal traits in Norwegian White Sheep.
    Lillehammer M; Sonesson AK; Klemetsdal G; Blichfeldt T; Meuwissen THE
    J Anim Breed Genet; 2020 Jul; 137(4):384-394. PubMed ID: 32236991
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a SNP panel dedicated to parentage assignment in French sheep populations.
    Tortereau F; Moreno CR; Tosser-Klopp G; Servin B; Raoul J
    BMC Genet; 2017 May; 18(1):50. PubMed ID: 28549462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Perspectives for artificial insemination and genomics to improve global swine populations.
    Gerrits RJ; Lunney JK; Johnson LA; Pursel VG; Kraeling RR; Rohrer GA; Dobrinsky JR
    Theriogenology; 2005 Jan; 63(2):283-99. PubMed ID: 15626400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Short communication: Field fertility in Holstein bulls: Can type of breeding strategy (artificial insemination following estrus versus timed artificial insemination) alter service sire fertility?
    Batista EOS; Vieira LM; Sá Filho MF; Carvalho PD; Rivera H; Cabrera V; Wiltbank MC; Baruselli PS; Souza AH
    J Dairy Sci; 2016 Mar; 99(3):2010-2015. PubMed ID: 26778314
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of selection index calculations to determine selection strategies in genomic breeding programs.
    König S; Swalve HH
    J Dairy Sci; 2009 Oct; 92(10):5292-303. PubMed ID: 19762847
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing genetic gain, inbreeding, and bias attributable to different flock genetic means in alternative sheep sire referencing schemes.
    Kuehn LA; Notter DR; Lewis RM
    J Anim Sci; 2008 Mar; 86(3):526-35. PubMed ID: 18073281
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Review: Genomics of bull fertility.
    Taylor JF; Schnabel RD; Sutovsky P
    Animal; 2018 Jun; 12(s1):s172-s183. PubMed ID: 29618393
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of genetic selection on management of boar replacement.
    Robinson JA; Buhr MM
    Theriogenology; 2005 Jan; 63(2):668-78. PubMed ID: 15626424
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of genomic selection of AI dairy sires on their likely utilization and methods to estimate fertility: a paradigm shift.
    Amann RP; DeJarnette JM
    Theriogenology; 2012 Mar; 77(5):795-817. PubMed ID: 22153268
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.