These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 33574048)

  • 1. The cAMP-dependent phosphorylation footprint in response to heat stress.
    Domingo G; Marsoni M; Davide E; Fortunato S; de Pinto MC; Bracale M; Molla G; Gehring C; Vannini C
    Plant Cell Rep; 2024 May; 43(6):137. PubMed ID: 38713285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesizing Signaling Pathways from Temporal Phosphoproteomic Data.
    Köksal AS; Beck K; Cronin DR; McKenna A; Camp ND; Srivastava S; MacGilvray ME; Bodík R; Wolf-Yadlin A; Fraenkel E; Fisher J; Gitter A
    Cell Rep; 2018 Sep; 24(13):3607-3618. PubMed ID: 30257219
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A genome-scale approach for determining the function of phosphorylation sites.
    Nat Methods; 2024 Jun; 21(6):940-941. PubMed ID: 38689100
    [No Abstract]   [Full Text] [Related]  

  • 4. JCL roundtable: Lipids and inflammation in atherosclerosis.
    Bornfeldt KE; Linton MF; Fisher EA; Guyton JR
    J Clin Lipidol; 2021; 15(1):3-17. PubMed ID: 33589093
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The doxorubicin-induced cell motility network is under the control of the ceramide-activated protein phosphatase 1 alpha.
    Canals D; Salamone S; Santacreu BJ; Aguilar D; Hernandez-Corbacho MJ; Ostermeyer-Fay AG; Greene M; Nemeth E; Haley JD; Obeid LM; Hannun YA
    FASEB J; 2021 Mar; 35(3):e21396. PubMed ID: 33583073
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Associations of hemoglobin and change in hemoglobin with risk of incident hip fracture in older men and women: the cardiovascular health study.
    Valderrábano RJ; Buzkova P; Chang PY; Zakai NA; Fink HA; Robbins JA; Wu JY; Lee JS;
    Osteoporos Int; 2021 Aug; 32(8):1669-1677. PubMed ID: 33576845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficacy and tolerability of sitagliptin and metformin compared with insulin as an initial therapy for newly diagnosed diabetic patients with severe hyperglycaemia.
    He M; Deng M; Wang J; Fan P; Wang Y; Zhao X; He Y; Shi B; Sui J
    Exp Ther Med; 2021 Mar; 21(3):217. PubMed ID: 33574913
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Successful Control of Hypoglycemia with Pasireotide LAR in a Patient with Inappropriate Insulin Secretion.
    Rouland A; Bouillet B; Legris P; Simoneau I; Petit JM; Vergès B
    Clin Pharmacol; 2021; 13():33-37. PubMed ID: 33574715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphatases modified by LH signaling in ovarian follicles: testing their role in regulating the NPR2 guanylyl cyclase†.
    Egbert JR; Silbern I; Uliasz TF; Lowther KM; Yee SP; Urlaub H; Jaffe LA
    Biol Reprod; 2024 Jan; 110(1):102-115. PubMed ID: 37774352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphatases modified by LH signaling in ovarian follicles: testing their role in regulating the NPR2 guanylyl cyclase.
    Egbert JR; Silbern I; Uliasz TF; Lowther KM; Yee SP; Urlaub H; Jaffe LA
    bioRxiv; 2023 Sep; ():. PubMed ID: 37333193
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative phosphoproteomic analysis reveals unique cAMP signaling pools emanating from AC2 and AC6 in human airway smooth muscle cells.
    Cattani-Cavalieri I; Li Y; Margolis J; Bogard A; Roosan MR; Ostrom RS
    Front Physiol; 2023; 14():1149063. PubMed ID: 36926196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using the Proteomics Toolbox to Resolve Topology and Dynamics of Compartmentalized cAMP Signaling.
    Kovanich D; Low TY; Zaccolo M
    Int J Mol Sci; 2023 Feb; 24(5):. PubMed ID: 36902098
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphoproteomic Analysis as an Approach for Understanding Molecular Mechanisms of cAMP-Dependent Actions.
    Beavo JA; Golkowski M; Shimizu-Albergine M; Beltejar MC; Bornfeldt KE; Ong SE
    Mol Pharmacol; 2021 May; 99(5):342-357. PubMed ID: 33574048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphoproteomic Identification of Vasopressin/cAMP/Protein Kinase A-Dependent Signaling in Kidney.
    Salhadar K; Matthews A; Raghuram V; Limbutara K; Yang CR; Datta A; Chou CL; Knepper MA
    Mol Pharmacol; 2021 May; 99(5):358-369. PubMed ID: 32245905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studying mechanisms of cAMP and cyclic nucleotide phosphodiesterase signaling in Leydig cell function with phosphoproteomics.
    Golkowski M; Shimizu-Albergine M; Suh HW; Beavo JA; Ong SE
    Cell Signal; 2016 Jul; 28(7):764-78. PubMed ID: 26643407
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Axelrod Symposium 2019: Phosphoproteomic Analysis of G-Protein-Coupled Pathways.
    Schleicher K; Zaccolo M
    Mol Pharmacol; 2021 May; 99(5):383-391. PubMed ID: 32111700
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative phosphoproteomic analysis reveals cAMP/vasopressin-dependent signaling pathways in native renal thick ascending limb cells.
    Gunaratne R; Braucht DW; Rinschen MM; Chou CL; Hoffert JD; Pisitkun T; Knepper MA
    Proc Natl Acad Sci U S A; 2010 Aug; 107(35):15653-8. PubMed ID: 20713729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction between phosphodiesterases in the regulation of the cardiac β-adrenergic pathway.
    Zhao CY; Greenstein JL; Winslow RL
    J Mol Cell Cardiol; 2015 Nov; 88():29-38. PubMed ID: 26388264
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.