BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

548 related articles for article (PubMed ID: 33574084)

  • 21. Phosphatase and tensin homologue deficiency in glioblastoma confers resistance to radiation and temozolomide that is reversed by the protease inhibitor nelfinavir.
    Jiang Z; Pore N; Cerniglia GJ; Mick R; Georgescu MM; Bernhard EJ; Hahn SM; Gupta AK; Maity A
    Cancer Res; 2007 May; 67(9):4467-73. PubMed ID: 17483362
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Activation of the protein tyrosine phosphatase SHP2 via the interleukin-6 signal transducing receptor protein gp130 requires tyrosine kinase Jak1 and limits acute-phase protein expression.
    Schaper F; Gendo C; Eck M; Schmitz J; Grimm C; Anhuf D; Kerr IM; Heinrich PC
    Biochem J; 1998 Nov; 335 ( Pt 3)(Pt 3):557-65. PubMed ID: 9794795
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The tyrosine phosphatase SHP2 promotes proliferation and oxaliplatin resistance of colon cancer cells through AKT and ERK.
    Yu M; Xu C; Zhang H; Lun J; Wang L; Zhang G; Fang J
    Biochem Biophys Res Commun; 2021 Jul; 563():1-7. PubMed ID: 34052504
    [TBL] [Abstract][Full Text] [Related]  

  • 24. PTEN reconstitution alters glioma responses to c-Met pathway inhibition.
    Goodwin CR; Lal B; Ho S; Woodard CL; Zhou X; Taeger A; Xia S; Laterra J
    Anticancer Drugs; 2011 Oct; 22(9):905-12. PubMed ID: 21654317
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inhibition of SHP2 as an approach to block RAS-driven cancers.
    Chou YT; Bivona TG
    Adv Cancer Res; 2022; 153():205-236. PubMed ID: 35101231
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Antitumor activity of rapamycin in a Phase I trial for patients with recurrent PTEN-deficient glioblastoma.
    Cloughesy TF; Yoshimoto K; Nghiemphu P; Brown K; Dang J; Zhu S; Hsueh T; Chen Y; Wang W; Youngkin D; Liau L; Martin N; Becker D; Bergsneider M; Lai A; Green R; Oglesby T; Koleto M; Trent J; Horvath S; Mischel PS; Mellinghoff IK; Sawyers CL
    PLoS Med; 2008 Jan; 5(1):e8. PubMed ID: 18215105
    [TBL] [Abstract][Full Text] [Related]  

  • 27. SHP2 is a multifunctional therapeutic target in drug resistant metastatic breast cancer.
    Chen H; Libring S; Ruddraraju KV; Miao J; Solorio L; Zhang ZY; Wendt MK
    Oncogene; 2020 Dec; 39(49):7166-7180. PubMed ID: 33033382
    [TBL] [Abstract][Full Text] [Related]  

  • 28. SHP2 Drives Adaptive Resistance to ERK Signaling Inhibition in Molecularly Defined Subsets of ERK-Dependent Tumors.
    Ahmed TA; Adamopoulos C; Karoulia Z; Wu X; Sachidanandam R; Aaronson SA; Poulikakos PI
    Cell Rep; 2019 Jan; 26(1):65-78.e5. PubMed ID: 30605687
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Small-Molecule Inhibitors of Shp2 Phosphatase as Potential Chemotherapeutic Agents for Glioblastoma: A Minireview.
    Mitra R; Ayyannan SR
    ChemMedChem; 2021 Mar; 16(5):777-787. PubMed ID: 33210828
    [TBL] [Abstract][Full Text] [Related]  

  • 30. SHP2 inhibition restores sensitivity in ALK-rearranged non-small-cell lung cancer resistant to ALK inhibitors.
    Dardaei L; Wang HQ; Singh M; Fordjour P; Shaw KX; Yoda S; Kerr G; Yu K; Liang J; Cao Y; Chen Y; Lawrence MS; Langenbucher A; Gainor JF; Friboulet L; Dagogo-Jack I; Myers DT; Labrot E; Ruddy D; Parks M; Lee D; DiCecca RH; Moody S; Hao H; Mohseni M; LaMarche M; Williams J; Hoffmaster K; Caponigro G; Shaw AT; Hata AN; Benes CH; Li F; Engelman JA
    Nat Med; 2018 May; 24(4):512-517. PubMed ID: 29505033
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inhibition of SHP2 by new compounds induces differential effects on RAS/RAF/ERK and PI3K/AKT pathways in different cancer cell types.
    Vazhappilly CG; Saleh E; Ramadan W; Menon V; Al-Azawi AM; Tarazi H; Abdu-Allah H; El-Shorbagi AN; El-Awady R
    Invest New Drugs; 2019 Apr; 37(2):252-261. PubMed ID: 29947013
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Combinations with Allosteric SHP2 Inhibitor TNO155 to Block Receptor Tyrosine Kinase Signaling.
    Liu C; Lu H; Wang H; Loo A; Zhang X; Yang G; Kowal C; Delach S; Wang Y; Goldoni S; Hastings WD; Wong K; Gao H; Meyer MJ; Moody SE; LaMarche MJ; Engelman JA; Williams JA; Hammerman PS; Abrams TJ; Mohseni M; Caponigro G; Hao HX
    Clin Cancer Res; 2021 Jan; 27(1):342-354. PubMed ID: 33046519
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Allosteric Inhibitors of SHP2 with Therapeutic Potential for Cancer Treatment.
    Xie J; Si X; Gu S; Wang M; Shen J; Li H; Shen J; Li D; Fang Y; Liu C; Zhu J
    J Med Chem; 2017 Dec; 60(24):10205-10219. PubMed ID: 29155585
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Glioblastoma Cell Resistance to EGFR and MET Inhibition Can Be Overcome via Blockade of FGFR-SPRY2 Bypass Signaling.
    Day EK; Sosale NG; Xiao A; Zhong Q; Purow B; Lazzara MJ
    Cell Rep; 2020 Mar; 30(10):3383-3396.e7. PubMed ID: 32160544
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Discovery of novel furanylbenzamide inhibitors that target oncogenic tyrosine phosphatase SHP2 in leukemia cells.
    Raveendra-Panickar D; Finlay D; Layng FI; Lambert LJ; Celeridad M; Zhao M; Barbosa K; De Backer LJS; Kwong E; Gosalia P; Rodiles S; Holleran J; Ardecky R; Grotegut S; Olson S; Hutchinson JH; Pasquale EB; Vuori K; Deshpande AJ; Cosford NDP; Tautz L
    J Biol Chem; 2022 Jan; 298(1):101477. PubMed ID: 34896393
    [TBL] [Abstract][Full Text] [Related]  

  • 36. SOCS3 exerts its inhibitory function on interleukin-6 signal transduction through the SHP2 recruitment site of gp130.
    Schmitz J; Weissenbach M; Haan S; Heinrich PC; Schaper F
    J Biol Chem; 2000 Apr; 275(17):12848-56. PubMed ID: 10777583
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tyrosine phosphatase SHP2 promotes breast cancer progression and maintains tumor-initiating cells via activation of key transcription factors and a positive feedback signaling loop.
    Aceto N; Sausgruber N; Brinkhaus H; Gaidatzis D; Martiny-Baron G; Mazzarol G; Confalonieri S; Quarto M; Hu G; Balwierz PJ; Pachkov M; Elledge SJ; van Nimwegen E; Stadler MB; Bentires-Alj M
    Nat Med; 2012 Mar; 18(4):529-37. PubMed ID: 22388088
    [TBL] [Abstract][Full Text] [Related]  

  • 38. SHP2 promotes proliferation of breast cancer cells through regulating Cyclin D1 stability
    Yuan Y; Fan Y; Gao Z; Sun X; Zhang H; Wang Z; Cui Y; Song W; Wang Z; Zhang F; Niu R
    Cancer Biol Med; 2020 Aug; 17(3):707-725. PubMed ID: 32944401
    [No Abstract]   [Full Text] [Related]  

  • 39. Signal transduction of IL-6, leukemia-inhibitory factor, and oncostatin M: structural receptor requirements for signal attenuation.
    Anhuf D; Weissenbach M; Schmitz J; Sobota R; Hermanns HM; Radtke S; Linnemann S; Behrmann I; Heinrich PC; Schaper F
    J Immunol; 2000 Sep; 165(5):2535-43. PubMed ID: 10946280
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Role of SHP2 in hematopoiesis and leukemogenesis.
    Pandey R; Saxena M; Kapur R
    Curr Opin Hematol; 2017 Jul; 24(4):307-313. PubMed ID: 28306669
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 28.