These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

486 related articles for article (PubMed ID: 33574101)

  • 1. A Stacked Generalization of 3D Orthogonal Deep Learning Convolutional Neural Networks for Improved Detection of White Matter Hyperintensities in 3D FLAIR Images.
    Umapathy L; Perez-Carrillo GG; Keerthivasan MB; Rosado-Toro JA; Altbach MI; Winegar B; Weinkauf C; Bilgin A;
    AJNR Am J Neuroradiol; 2021 Apr; 42(4):639-647. PubMed ID: 33574101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Segmenting white matter hyperintensities on isotropic three-dimensional Fluid Attenuated Inversion Recovery magnetic resonance images: Assessing deep learning tools on a Norwegian imaging database.
    Røvang MS; Selnes P; MacIntosh BJ; Rasmus Groote I; Pålhaugen L; Sudre C; Fladby T; Bjørnerud A
    PLoS One; 2023; 18(8):e0285683. PubMed ID: 37616243
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic segmentation of white matter hyperintensities: validation and comparison with state-of-the-art methods on both Multiple Sclerosis and elderly subjects.
    Tran P; Thoprakarn U; Gourieux E; Dos Santos CL; Cavedo E; Guizard N; Cotton F; Krolak-Salmon P; Delmaire C; Heidelberg D; Pyatigorskaya N; Ströer S; Dormont D; Martini JB; Chupin M;
    Neuroimage Clin; 2022; 33():102940. PubMed ID: 35051744
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Convolutional Neural Network for Automated FLAIR Lesion Segmentation on Clinical Brain MR Imaging.
    Duong MT; Rudie JD; Wang J; Xie L; Mohan S; Gee JC; Rauschecker AM
    AJNR Am J Neuroradiol; 2019 Aug; 40(8):1282-1290. PubMed ID: 31345943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An anatomical knowledge-based MRI deep learning pipeline for white matter hyperintensity quantification associated with cognitive impairment.
    Liang L; Zhou P; Lu W; Guo X; Ye C; Lv H; Wang T; Ma T
    Comput Med Imaging Graph; 2021 Apr; 89():101873. PubMed ID: 33610084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic segmentation of white matter hyperintensities in T2-FLAIR with AQUA: A comparative validation study against conventional methods.
    Lee S; Rieu Z; Kim RE; Lee M; Yen K; Yong J; Kim D
    Brain Res Bull; 2023 Dec; 205():110825. PubMed ID: 38000477
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SegAE: Unsupervised white matter lesion segmentation from brain MRIs using a CNN autoencoder.
    Atlason HE; Love A; Sigurdsson S; Gudnason V; Ellingsen LM
    Neuroimage Clin; 2019; 24():102085. PubMed ID: 31835288
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D APA-Net: 3D Adversarial Pyramid Anisotropic Convolutional Network for Prostate Segmentation in MR Images.
    Jia H; Xia Y; Song Y; Zhang D; Huang H; Zhang Y; Cai W
    IEEE Trans Med Imaging; 2020 Feb; 39(2):447-457. PubMed ID: 31295109
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving automated multiple sclerosis lesion segmentation with a cascaded 3D convolutional neural network approach.
    Valverde S; Cabezas M; Roura E; González-Villà S; Pareto D; Vilanova JC; Ramió-Torrentà L; Rovira À; Oliver A; Lladó X
    Neuroimage; 2017 Jul; 155():159-168. PubMed ID: 28435096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. End-to-end volumetric segmentation of white matter hyperintensities using deep learning.
    Farkhani S; Demnitz N; Boraxbekk CJ; Lundell H; Siebner HR; Petersen ET; Madsen KH
    Comput Methods Programs Biomed; 2024 Mar; 245():108008. PubMed ID: 38290291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of a deep learning approach for the segmentation of brain tissues and white matter hyperintensities of presumed vascular origin in MRI.
    Moeskops P; de Bresser J; Kuijf HJ; Mendrik AM; Biessels GJ; Pluim JPW; Išgum I
    Neuroimage Clin; 2018; 17():251-262. PubMed ID: 29159042
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visual ensemble selection of deep convolutional neural networks for 3D segmentation of breast tumors on dynamic contrast enhanced MRI.
    Rahimpour M; Saint Martin MJ; Frouin F; Akl P; Orlhac F; Koole M; Malhaire C
    Eur Radiol; 2023 Feb; 33(2):959-969. PubMed ID: 36074262
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Segmentation of white matter hyperintensities using convolutional neural networks with global spatial information in routine clinical brain MRI with none or mild vascular pathology.
    Rachmadi MF; Valdés-Hernández MDC; Agan MLF; Di Perri C; Komura T;
    Comput Med Imaging Graph; 2018 Jun; 66():28-43. PubMed ID: 29523002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A deep learning algorithm for white matter hyperintensity lesion detection and segmentation.
    Zhang Y; Duan Y; Wang X; Zhuo Z; Haller S; Barkhof F; Liu Y
    Neuroradiology; 2022 Apr; 64(4):727-734. PubMed ID: 34599377
    [TBL] [Abstract][Full Text] [Related]  

  • 15. White matter hyperintensity and stroke lesion segmentation and differentiation using convolutional neural networks.
    Guerrero R; Qin C; Oktay O; Bowles C; Chen L; Joules R; Wolz R; Valdés-Hernández MC; Dickie DA; Wardlaw J; Rueckert D
    Neuroimage Clin; 2018; 17():918-934. PubMed ID: 29527496
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Segmentation of Cerebral Small Vessel Diseases-White Matter Hyperintensities Based on a Deep Learning System.
    Shan W; Duan Y; Zheng Y; Wu Z; Chan SW; Wang Q; Gao P; Liu Y; He K; Wang Y
    Front Med (Lausanne); 2021; 8():681183. PubMed ID: 34901045
    [No Abstract]   [Full Text] [Related]  

  • 17. Detection of white matter lesion regions in MRI using SLIC0 and convolutional neural network.
    Diniz PHB; Valente TLA; Diniz JOB; Silva AC; Gattass M; Ventura N; Muniz BC; Gasparetto EL
    Comput Methods Programs Biomed; 2018 Dec; 167():49-63. PubMed ID: 29706405
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fully convolutional network ensembles for white matter hyperintensities segmentation in MR images.
    Li H; Jiang G; Zhang J; Wang R; Wang Z; Zheng WS; Menze B
    Neuroimage; 2018 Dec; 183():650-665. PubMed ID: 30125711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep Bayesian networks for uncertainty estimation and adversarial resistance of white matter hyperintensity segmentation.
    Mojiri Forooshani P; Biparva M; Ntiri EE; Ramirez J; Boone L; Holmes MF; Adamo S; Gao F; Ozzoude M; Scott CJM; Dowlatshahi D; Lawrence-Dewar JM; Kwan D; Lang AE; Marcotte K; Leonard C; Rochon E; Heyn C; Bartha R; Strother S; Tardif JC; Symons S; Masellis M; Swartz RH; Moody A; Black SE; Goubran M
    Hum Brain Mapp; 2022 May; 43(7):2089-2108. PubMed ID: 35088930
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-Disease Segmentation of Gliomas and White Matter Hyperintensities in the BraTS Data Using a 3D Convolutional Neural Network.
    Rudie JD; Weiss DA; Saluja R; Rauschecker AM; Wang J; Sugrue L; Bakas S; Colby JB
    Front Comput Neurosci; 2019; 13():84. PubMed ID: 31920609
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.