These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 3357414)

  • 1. Paired sequence difference in ribosomal RNAs: evolutionary and phylogenetic implications.
    Wheeler WC; Honeycutt RL
    Mol Biol Evol; 1988 Jan; 5(1):90-6. PubMed ID: 3357414
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nucleotide sequence, secondary structure and evolution of the 5S ribosomal RNA from five bacterial species.
    Vandenberghe A; Wassink A; Raeymaekers P; De Baere R; Huysmans E; De Wachter R
    Eur J Biochem; 1985 Jun; 149(3):537-42. PubMed ID: 2408888
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 5S RNA sequence from the Philosamia silkworm: evidence for variable evolutionary rates in insect 5S RNA.
    Xian-Rong G; Nicoghosian K; Cedergren RJ
    Nucleic Acids Res; 1982 Sep; 10(18):5711-6. PubMed ID: 7145713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The 5S ribosomal RNA sequences of a red algal rhodoplast and a gymnosperm chloroplast. Implications for the evolution of plastids and cyanobacteria.
    Van den Eynde H; De Baere R; De Roeck E; Van de Peer Y; Vandenberghe A; Willekens P; De Wachter R
    J Mol Evol; 1988; 27(2):126-32. PubMed ID: 3137350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolutionary change in 5S RNA secondary structure and a phylogenic tree of 54 5S RNA species.
    Hori H; Osawa S
    Proc Natl Acad Sci U S A; 1979 Jan; 76(1):381-5. PubMed ID: 284354
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nucleotide sequences and evolutional aspect of 5S ribosomal RNAs from Lingula and silkworm.
    Komiya H; Kawakami M; Shimizu N; Takemura S
    Nucleic Acids Symp Ser; 1980; (8):s119-22. PubMed ID: 7196035
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Phylogenetic analysis of partial nucleotide sequences of 18S rRNA for 14 plant species].
    Rakhimova GM; Troitskiĭ AV; Klikunova IN; Antonov AS
    Mol Biol (Mosk); 1989; 23(3):830-42. PubMed ID: 2770744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generalized structures of the 5S ribosomal RNAs.
    Delihas N; Andersen J
    Nucleic Acids Res; 1982 Nov; 10(22):7323-44. PubMed ID: 7155895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nucleotide sequences of 5s rRNAs from sponge Halichondria japonica and tunicate Halocynthia roretzi and their phylogenetic positions.
    Komiya H; Hasegawa M; Takemura S
    Nucleic Acids Res; 1983 Apr; 11(7):1969-74. PubMed ID: 6835845
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An evaluation of the phylogenetic position of the dinoflagellate Crypthecodinium cohnii based on 5S rRNA characterization.
    Hinnebusch AG; Klotz LC; Blanken RL; Loeblich AR
    J Mol Evol; 1981; 17(6):334-7. PubMed ID: 7197304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The nucleotide sequences of the 5S rRNAs of four mushrooms and their use in studying the phylogenetic position of basidiomycetes among the eukaryotes.
    Huysmans E; Dams E; Vandenberghe A; De Wachter R
    Nucleic Acids Res; 1983 May; 11(9):2871-80. PubMed ID: 6856478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cladistic analysis of ribosomal RNAs--the phylogeny of eukaryotes with respect to the endosymbiotic theory.
    Wolters J; Erdmann VA
    Biosystems; 1988; 21(3-4):209-14. PubMed ID: 3395680
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitation of base substitutions in eukaryotic 5S rRNA: selection for the maintenance of RNA secondary structure.
    Curtiss WC; Vournakis JN
    J Mol Evol; 1984; 20(3-4):351-61. PubMed ID: 6439889
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phylogenetic reconstruction using secondary structures of Internal Transcribed Spacer 2 (ITS2, rDNA): finding the molecular and morphological gap in Caribbean gorgonian corals.
    Grajales A; Aguilar C; Sánchez JA
    BMC Evol Biol; 2007 Jun; 7():90. PubMed ID: 17562014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dependence among sites in RNA evolution.
    Yu J; Thorne JL
    Mol Biol Evol; 2006 Aug; 23(8):1525-37. PubMed ID: 16720696
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolution of large subunit rRNA structure. The 3' terminal domain contains elements of secondary structure specific to major phylogenetic groups.
    Bachellerie JP; Michot B
    Biochimie; 1989 Jun; 71(6):701-9. PubMed ID: 2502186
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The nucleotide sequences of 5S ribosomal RNAs from four Bryophyta-species.
    Katoh K; Hori H; Osawa S
    Nucleic Acids Res; 1983 Aug; 11(16):5671-4. PubMed ID: 6571698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Universal structural features of prokaryotic and eukaryotic ribosomal 5S RNA derived from comparative analysis of their sequences.
    Böhm S; Fabian H; Welfle H
    Acta Biol Med Ger; 1982; 41(1):1-16. PubMed ID: 7113541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effectiveness of mitochondrial rRNA gene sequences for the reconstruction of the phylogeny of an insect order (Orthoptera).
    Flook PK; Rowell CH
    Mol Phylogenet Evol; 1997 Oct; 8(2):177-92. PubMed ID: 9299223
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Origin and evolution of organisms as deduced from 5S ribosomal RNA sequences.
    Hori H; Osawa S
    Mol Biol Evol; 1987 Sep; 4(5):445-72. PubMed ID: 2452957
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.