These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 33574246)

  • 21. Crystal Plasticity Modeling of Anisotropic Hardening and Texture Due to Dislocation Transmutation in Twinning.
    Allen RM; Toth LS; Oppedal AL; El Kadiri H
    Materials (Basel); 2018 Sep; 11(10):. PubMed ID: 30274190
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Atomic-scale observation of nucleation- and growth-controlled deformation twinning in body-centered cubic nanocrystals.
    Zhong L; Zhang Y; Wang X; Zhu T; Mao SX
    Nat Commun; 2024 Jan; 15(1):560. PubMed ID: 38228646
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hierarchical nanotwins in single-crystal-like nickel with high strength and corrosion resistance produced via a hybrid technique.
    Li Q; Xue S; Price P; Sun X; Ding J; Shang Z; Fan Z; Wang H; Zhang Y; Chen Y; Wang H; Hattar K; Zhang X
    Nanoscale; 2020 Jan; 12(3):1356-1365. PubMed ID: 31854411
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nanodomained Nickel Unite Nanocrystal Strength with Coarse-Grain Ductility.
    Wu X; Yuan F; Yang M; Jiang P; Zhang C; Chen L; Wei Y; Ma E
    Sci Rep; 2015 Jun; 5():11728. PubMed ID: 26122728
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Atomistic Investigation of Anisotropic Nanoindentation Behavior of Nanotwinned Aluminum Containing Inclined Twin Boundaries.
    Liu Y; Duan Y; Zhang J
    Nanomaterials (Basel); 2018 Sep; 8(9):. PubMed ID: 30200607
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ultimate Strength of Nanotwinned Face-Centered Cubic Metals.
    Xiao J; Deng C
    Phys Rev Lett; 2020 Dec; 125(26):266101. PubMed ID: 33449721
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High Reversible Strain in Nanotwinned Metals.
    He S; Jiang B; Wang C; Chen C; Duan H; Jin S; Ye H; Lu L; Du K
    ACS Appl Mater Interfaces; 2021 Sep; 13(38):46088-46096. PubMed ID: 34541843
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In situ observation of twin-assisted grain growth in nanometer-scaled metal.
    He S; Wang C; Qi L; Ye H; Du K
    Micron; 2020 Apr; 131():102825. PubMed ID: 31951939
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In situ atomic scale mechanisms of strain-induced twin boundary shear to high angle grain boundary in nanocrystalline Pt.
    Wang L; Teng J; Wu Y; Sha X; Xiang S; Mao S; Yu G; Zhang Z; Zou J; Han X
    Ultramicroscopy; 2018 Dec; 195():69-73. PubMed ID: 30195095
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Defective twin boundaries in nanotwinned metals.
    Wang YM; Sansoz F; LaGrange T; Ott RT; Marian J; Barbee TW; Hamza AV
    Nat Mater; 2013 Aug; 12(8):697-702. PubMed ID: 23685864
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of De-Twinning on Tensile Strength of Nano-Twinned Cu Films.
    Lee CH; Lin EJ; Wang JY; Lin YX; Wu CY; Chiu CY; Yeh CY; Huang BR; Fu KL; Liu CY
    Nanomaterials (Basel); 2021 Jun; 11(7):. PubMed ID: 34206189
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Deformation mechanisms in nanotwinned metal nanopillars.
    Jang D; Li X; Gao H; Greer JR
    Nat Nanotechnol; 2012 Sep; 7(9):594-601. PubMed ID: 22796745
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Uniting tensile ductility with ultrahigh strength via composition undulation.
    Li H; Zong H; Li S; Jin S; Chen Y; Cabral MJ; Chen B; Huang Q; Chen Y; Ren Y; Yu K; Han S; Ding X; Sha G; Lian J; Liao X; Ma E; Sun J
    Nature; 2022 Apr; 604(7905):273-279. PubMed ID: 35418634
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Removal of stacking-fault tetrahedra by twin boundaries in nanotwinned metals.
    Yu KY; Bufford D; Sun C; Liu Y; Wang H; Kirk MA; Li M; Zhang X
    Nat Commun; 2013; 4():1377. PubMed ID: 23340417
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reversible cyclic deformation mechanism of gold nanowires by twinning-detwinning transition evidenced from in situ TEM.
    Lee S; Im J; Yoo Y; Bitzek E; Kiener D; Richter G; Kim B; Oh SH
    Nat Commun; 2014; 5():3033. PubMed ID: 24398783
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In Situ Study of Twin Boundary Stability in Nanotwinned Copper Pillars under Different Strain Rates.
    Chang SY; Huang YC; Lin SY; Lu CL; Chen C; Dao M
    Nanomaterials (Basel); 2023 Jan; 13(1):. PubMed ID: 36616100
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Uneven Strain Distribution Induces Consecutive Dislocation Slipping, Plane Gliding, and Subsequent Detwinning of Penta-Twinned Nanoparticles.
    Song M; Cui J; Ophus C; Lee J; Yan T; Fichthorn KA; Li D
    Nano Lett; 2024 Jan; 24(4):1153-1159. PubMed ID: 38232325
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Supersonic Screw Dislocations Gliding at the Shear Wave Speed.
    Peng S; Wei Y; Jin Z; Yang W
    Phys Rev Lett; 2019 Feb; 122(4):045501. PubMed ID: 30768288
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Deformation twinning evolution from a single crystal in a face-centered-cubic ternary alloy.
    Zhang Z; Yang S; Guo D; Yuan B; Guo X; Zhang B; Huo Y
    Sci Rep; 2015 Jun; 5():11290. PubMed ID: 26060979
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dynamic transitions from smooth to rough to twinning in dislocation motion.
    Marian J; Cai W; Bulatov VV
    Nat Mater; 2004 Mar; 3(3):158-63. PubMed ID: 14991017
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.