These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 33574415)

  • 1. Hydrodynamic assisted multiparametric particle spectrometry.
    Martín-Pérez A; Ramos D; Yubero ML; García-López S; Kosaka PM; Tamayo J; Calleja M
    Sci Rep; 2021 Feb; 11(1):3535. PubMed ID: 33574415
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coherent Optical Transduction of Suspended Microcapillary Resonators for Multi-Parameter Sensing Applications.
    Martín-Pérez A; Ramos D; Tamayo J; Calleja M
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31757060
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechano-Optical Analysis of Single Cells with Transparent Microcapillary Resonators.
    Martín-Pérez A; Ramos D; Gil-Santos E; García-López S; Yubero ML; Kosaka PM; San Paulo Á; Tamayo J; Calleja M
    ACS Sens; 2019 Dec; 4(12):3325-3332. PubMed ID: 31782299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanomechanical hydrodynamic force sensing using suspended microfluidic channels.
    Martín-Pérez A; Ramos D
    Microsyst Nanoeng; 2023; 9():53. PubMed ID: 37168769
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hybrid Shape Memory Alloy-Based Nanomechanical Resonators for Ultrathin Film Elastic Properties Determination and Heavy Mass Spectrometry.
    Stachiv I; Gan L
    Materials (Basel); 2019 Oct; 12(21):. PubMed ID: 31683696
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High throughput single-cell and multiple-cell micro-encapsulation.
    Lagus TP; Edd JF
    J Vis Exp; 2012 Jun; (64):e4096. PubMed ID: 22733254
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mass Spectrometry of Heavy Analytes and Large Biological Aggregates by Monitoring Changes in the Quality Factor of Nanomechanical Resonators in Air.
    Stachiv I; Gan L; Kuo CY; Šittner P; Ševeček O
    ACS Sens; 2020 Jul; 5(7):2128-2135. PubMed ID: 32551518
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-throughput electrical position detection of single flowing particles/cells with non-spherical shape.
    Reale R; De Ninno A; Businaro L; Bisegna P; Caselli F
    Lab Chip; 2019 May; 19(10):1818-1827. PubMed ID: 30997463
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-particle mass spectrometry with arrays of frequency-addressed nanomechanical resonators.
    Sage E; Sansa M; Fostner S; Defoort M; Gély M; Naik AK; Morel R; Duraffourg L; Roukes ML; Alava T; Jourdan G; Colinet E; Masselon C; Brenac A; Hentz S
    Nat Commun; 2018 Aug; 9(1):3283. PubMed ID: 30115919
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A microfluidic-based hydrodynamic trap for single particles.
    Johnson-Chavarria EM; Tanyeri M; Schroeder CM
    J Vis Exp; 2011 Jan; (47):. PubMed ID: 21304467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large-scale parallelization of nanomechanical mass spectrometry with weakly-coupled resonators.
    Stassi S; De Laurentis G; Chakraborty D; Bejtka K; Chiodoni A; Sader JE; Ricciardi C
    Nat Commun; 2019 Sep; 10(1):3647. PubMed ID: 31501423
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid and high-precision sizing of single particles using parallel suspended microchannel resonator arrays and deconvolution.
    Stockslager MA; Olcum S; Knudsen SM; Kimmerling RJ; Cermak N; Payer KR; Agache V; Manalis SR
    Rev Sci Instrum; 2019 Aug; 90(8):085004. PubMed ID: 31472632
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-speed multiple-mode mass-sensing resolves dynamic nanoscale mass distributions.
    Olcum S; Cermak N; Wasserman SC; Manalis SR
    Nat Commun; 2015 May; 6():7070. PubMed ID: 25963304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic impedance cytometry device with N-shaped electrodes for lateral position measurement of single cells/particles.
    Yang D; Ai Y
    Lab Chip; 2019 Nov; 19(21):3609-3617. PubMed ID: 31517354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nano-Optomechanical Resonators in Microfluidics.
    Fong KY; Poot M; Tang HX
    Nano Lett; 2015 Sep; 15(9):6116-20. PubMed ID: 26226184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrophoresis assisted time-of-flow mass spectrometry using hollow nanomechanical resonators.
    Chaudhari S; Chaudhari K; Kim S; Khan F; Lee J; Thundat T
    Sci Rep; 2017 Jun; 7(1):3535. PubMed ID: 28615653
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of hydrodynamic inter-particle interaction on the orbital motion of dielectric nanoparticles driven by an optical vortex.
    Tsuji T; Nakatsuka R; Nakajima K; Doi K; Kawano S
    Nanoscale; 2020 Mar; 12(12):6673-6690. PubMed ID: 32068212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neutral mass spectrometry of virus capsids above 100 megadaltons with nanomechanical resonators.
    Dominguez-Medina S; Fostner S; Defoort M; Sansa M; Stark AK; Halim MA; Vernhes E; Gely M; Jourdan G; Alava T; Boulanger P; Masselon C; Hentz S
    Science; 2018 Nov; 362(6417):918-922. PubMed ID: 30467165
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrasensitive nanomechanical mass sensor using hybrid opto-electromechanical systems.
    Jiang C; Cui Y; Zhu KD
    Opt Express; 2014 Jun; 22(11):13773-83. PubMed ID: 24921569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mass loading induced dephasing in nanomechanical resonators.
    Atalaya J
    J Phys Condens Matter; 2012 Nov; 24(47):475301. PubMed ID: 23104872
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.