These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 33574748)

  • 1. Adaptive Locomotion Control of a Hexapod Robot via Bio-Inspired Learning.
    Ouyang W; Chi H; Pang J; Liang W; Ren Q
    Front Neurorobot; 2021; 15():627157. PubMed ID: 33574748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quadrupedal Robot Locomotion: A Biologically Inspired Approach and Its Hardware Implementation.
    Espinal A; Rostro-Gonzalez H; Carpio M; Guerra-Hernandez EI; Ornelas-Rodriguez M; Puga-Soberanes HJ; Sotelo-Figueroa MA; Melin P
    Comput Intell Neurosci; 2016; 2016():5615618. PubMed ID: 27436997
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CPG-Based Gait Generation of the Curved-Leg Hexapod Robot with Smooth Gait Transition.
    Bai L; Hu H; Chen X; Sun Y; Ma C; Zhong Y
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31455002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visually guided gait modifications for stepping over an obstacle: a bio-inspired approach.
    Silva P; Matos V; Santos CP
    Biol Cybern; 2014 Feb; 108(1):103-19. PubMed ID: 24469319
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-supervised learning of the biologically-inspired obstacle avoidance of hexapod walking robot.
    Čížek P; Faigl J
    Bioinspir Biomim; 2019 May; 14(4):046002. PubMed ID: 30995613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Workspace trajectory generation with smooth gait transition using CPG-based locomotion control for hexapod robot.
    Helal K; Albadin A; Albitar C; Alsaba M
    Heliyon; 2024 Jun; 10(11):e31847. PubMed ID: 38882328
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Locomotion Control With Frequency and Motor Pattern Adaptations.
    Thor M; Strohmer B; Manoonpong P
    Front Neural Circuits; 2021; 15():743888. PubMed ID: 34899196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CPG-inspired workspace trajectory generation and adaptive locomotion control for quadruped robots.
    Liu C; Chen Q; Wang D
    IEEE Trans Syst Man Cybern B Cybern; 2011 Jun; 41(3):867-80. PubMed ID: 21216715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-layered multi-pattern CPG for adaptive locomotion of humanoid robots.
    Nassour J; Hénaff P; Benouezdou F; Cheng G
    Biol Cybern; 2014 Jun; 108(3):291-303. PubMed ID: 24570353
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reinforcement learning-based optimization of locomotion controller using multiple coupled CPG oscillators for elongated undulating fin propulsion.
    Nguyen VD; Vo DQ; Duong VT; Nguyen HH; Nguyen TT
    Math Biosci Eng; 2022 Jan; 19(1):738-758. PubMed ID: 34903010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An adaptive, self-organizing dynamical system for hierarchical control of bio-inspired locomotion.
    Arena P; Fortuna L; Frasca M; Sicurella G
    IEEE Trans Syst Man Cybern B Cybern; 2004 Aug; 34(4):1823-37. PubMed ID: 15462448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Turning and Radius Deviation Correction for a Hexapod Walking Robot Based on an Ant-Inspired Sensory Strategy.
    Zhu Y; Guo T; Liu Q; Zhu Q; Zhao X; Jin B
    Sensors (Basel); 2017 Nov; 17(12):. PubMed ID: 29168742
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-Learning Event Mistiming Detector Based on Central Pattern Generator.
    Szadkowski R; Prágr M; Faigl J
    Front Neurorobot; 2021; 15():629652. PubMed ID: 33613224
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptive Interlimb Coordination Mechanism for Hexapod Locomotion Based on Active Load Sensing.
    Fukuhara A; Suda W; Kano T; Kobayashi R; Ishiguro A
    Front Neurorobot; 2022; 16():645683. PubMed ID: 35211001
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A gecko-inspired robot with CPG-based neural control for locomotion and body height adaptation.
    Shao D; Wang Z; Ji A; Dai Z; Manoonpong P
    Bioinspir Biomim; 2022 Apr; 17(3):. PubMed ID: 35236786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hybrid learning mechanisms under a neural control network for various walking speed generation of a quadruped robot.
    Zhang Y; Thor M; Dilokthanakul N; Dai Z; Manoonpong P
    Neural Netw; 2023 Oct; 167():292-308. PubMed ID: 37666187
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combining Evolutionary and Adaptive Control Strategies for Quadruped Robotic Locomotion.
    Massi E; Vannucci L; Albanese U; Capolei MC; Vandesompele A; Urbain G; Sabatini AM; Dambre J; Laschi C; Tolu S; Falotico E
    Front Neurorobot; 2019; 13():71. PubMed ID: 31555118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biologically-inspired adaptive obstacle negotiation behavior of hexapod robots.
    Goldschmidt D; Wörgötter F; Manoonpong P
    Front Neurorobot; 2014; 8():3. PubMed ID: 24523694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reinforcement learning for a biped robot based on a CPG-actor-critic method.
    Nakamura Y; Mori T; Sato MA; Ishii S
    Neural Netw; 2007 Aug; 20(6):723-35. PubMed ID: 17412559
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.