These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 33575351)

  • 81. Poly(lactic acid) nanofibrous scaffolds for tissue engineering.
    Santoro M; Shah SR; Walker JL; Mikos AG
    Adv Drug Deliv Rev; 2016 Dec; 107():206-212. PubMed ID: 27125190
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Development of polyamide-6,6/chitosan electrospun hybrid nanofibrous scaffolds for tissue engineering application.
    Shrestha BK; Mousa HM; Tiwari AP; Ko SW; Park CH; Kim CS
    Carbohydr Polym; 2016 Sep; 148():107-14. PubMed ID: 27185121
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Three-dimensional poly-(ε-caprolactone) nanofibrous scaffolds directly promote the cardiomyocyte differentiation of murine-induced pluripotent stem cells through Wnt/β-catenin signaling.
    Chen Y; Zeng D; Ding L; Li XL; Liu XT; Li WJ; Wei T; Yan S; Xie JH; Wei L; Zheng QS
    BMC Cell Biol; 2015 Sep; 16():22. PubMed ID: 26335746
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Fabrication and Characterization of Core-Shell Electrospun Fibrous Mats Containing Medicinal Herbs for Wound Healing and Skin Tissue Engineering.
    Zahedi E; Esmaeili A; Eslahi N; Shokrgozar MA; Simchi A
    Mar Drugs; 2019 Jan; 17(1):. PubMed ID: 30621270
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Embedded silica nanoparticles in poly(caprolactone) nanofibrous scaffolds enhanced osteogenic potential for bone tissue engineering.
    Ganesh N; Jayakumar R; Koyakutty M; Mony U; Nair SV
    Tissue Eng Part A; 2012 Sep; 18(17-18):1867-81. PubMed ID: 22725098
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Electrospun Nanofiber Scaffolds and Their Hydrogel Composites for the Engineering and Regeneration of Soft Tissues.
    Manoukian OS; Matta R; Letendre J; Collins P; Mazzocca AD; Kumbar SG
    Methods Mol Biol; 2017; 1570():261-278. PubMed ID: 28238143
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Investigating the effect of chitosan on hydrophilicity and bioactivity of conductive electrospun composite scaffold for neural tissue engineering.
    Sadeghi A; Moztarzadeh F; Aghazadeh Mohandesi J
    Int J Biol Macromol; 2019 Jan; 121():625-632. PubMed ID: 30300697
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Fabrication of chitosan/poly(caprolactone) nanofibrous scaffold for bone and skin tissue engineering.
    Shalumon KT; Anulekha KH; Chennazhi KP; Tamura H; Nair SV; Jayakumar R
    Int J Biol Macromol; 2011 May; 48(4):571-6. PubMed ID: 21291908
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Culturing of Mouse Mesenchymal Stem Cells on Poly-3-Hydroxybutyrate Scaffolds.
    Andreeva NV; Bonartsev AP; Zharkova II; Makhina TK; Myshkina VL; Kharitonova EP; Voinova VV; Bonartseva GA; Shaitan KV; Belyavskii AV
    Bull Exp Biol Med; 2015 Aug; 159(4):567-71. PubMed ID: 26388561
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Calendula officinalis extract/PCL/Zein/Gum arabic nanofibrous bio-composite scaffolds via suspension, two-nozzle and multilayer electrospinning for skin tissue engineering.
    Pedram Rad Z; Mokhtari J; Abbasi M
    Int J Biol Macromol; 2019 Aug; 135():530-543. PubMed ID: 31152839
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Modifying the mechanical properties of silk nanofiber scaffold by knitted orientation for regenerative medicine applications.
    Dodel M; Hemmati Nejad N; Bahrami SH; Soleimani M; Hanaee-Ahvaz H
    Cell Mol Biol (Noisy-le-grand); 2016 Aug; 62(10):16-25. PubMed ID: 27609469
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Does the tissue engineering architecture of poly(3-hydroxybutyrate) scaffold affects cell-material interactions?
    Masaeli E; Morshed M; Rasekhian P; Karbasi S; Karbalaie K; Karamali F; Abedi D; Razavi S; Jafarian-Dehkordi A; Nasr-Esfahani MH; Baharvand H
    J Biomed Mater Res A; 2012 Jul; 100(7):1907-18. PubMed ID: 22492575
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Electrospun polycaprolactone 3D nanofibrous scaffold with interconnected and hierarchically structured pores for bone tissue engineering.
    Xu T; Miszuk JM; Zhao Y; Sun H; Fong H
    Adv Healthc Mater; 2015 Oct; 4(15):2238-46. PubMed ID: 26332611
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Electrospun homogeneous silk fibroin/poly (ɛ-caprolactone) nanofibrous scaffolds by addition of acetic acid for tissue engineering.
    Zhu J; Luo J; Zhao X; Gao J; Xiong J
    J Biomater Appl; 2016 Sep; 31(3):421-37. PubMed ID: 27422715
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Improved cellular response of chemically crosslinked collagen incorporated hydroxyethyl cellulose/poly(vinyl) alcohol nanofibers scaffold.
    Zulkifli FH; Jahir Hussain FS; Abdull Rasad MS; Mohd Yusoff M
    J Biomater Appl; 2015 Feb; 29(7):1014-27. PubMed ID: 25186524
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Nanofibers from blends of polyvinyl alcohol and polyhydroxy butyrate as potential scaffold material for tissue engineering of skin.
    Asran ASh; Razghandi K; Aggarwal N; Michler GH; Groth T
    Biomacromolecules; 2010 Dec; 11(12):3413-21. PubMed ID: 21090703
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Gelatin nanoparticles loaded poly(ε-caprolactone) nanofibrous semi-synthetic scaffolds for bone tissue engineering.
    Binulal NS; Natarajan A; Menon D; Bhaskaran VK; Mony U; Nair SV
    Biomed Mater; 2012 Dec; 7(6):065001. PubMed ID: 23047255
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Poly(3-hydroxybutyrate): Promising biomaterial for bone tissue engineering.
    Dariš B; Knez Ž
    Acta Pharm; 2020 Mar; 70(1):1-15. PubMed ID: 31677369
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Fabrication, microstructure characterization, and degradation performance of electrospun mats based on poly(3-hydroxybutyrate-co-3 hydroxyvalerate)/polyethylene glycol blend for potential tissue engineering.
    El-Newehy MH; Kim HY; Khattab TA; Abdulhameed MM; El-Naggar ME
    Luminescence; 2022 Feb; 37(2):323-331. PubMed ID: 34871472
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Evaluation of the effects of starch on polyhydroxybutyrate electrospun scaffolds for bone tissue engineering applications.
    Asl MA; Karbasi S; Beigi-Boroujeni S; Zamanlui Benisi S; Saeed M
    Int J Biol Macromol; 2021 Nov; 191():500-513. PubMed ID: 34555400
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.