BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 33575622)

  • 1. Factorial estimating assembly base errors using
    He C; Lin G; Wei H; Tang H; White FF; Valent B; Liu S
    NAR Genom Bioinform; 2020 Sep; 2(3):lqaa075. PubMed ID: 33575622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lerna: transformer architectures for configuring error correction tools for short- and long-read genome sequencing.
    Sharma A; Jain P; Mahgoub A; Zhou Z; Mahadik K; Chaterji S
    BMC Bioinformatics; 2022 Jan; 23(1):25. PubMed ID: 34991450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assembly of chloroplast genomes with long- and short-read data: a comparison of approaches using Eucalyptus pauciflora as a test case.
    Wang W; Schalamun M; Morales-Suarez A; Kainer D; Schwessinger B; Lanfear R
    BMC Genomics; 2018 Dec; 19(1):977. PubMed ID: 30594129
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A hybrid and scalable error correction algorithm for indel and substitution errors of long reads.
    Das AK; Goswami S; Lee K; Park SJ
    BMC Genomics; 2019 Dec; 20(Suppl 11):948. PubMed ID: 31856721
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ntEdit+Sealer: Efficient Targeted Error Resolution and Automated Finishing of Long-Read Genome Assemblies.
    Li JX; Coombe L; Wong J; Birol I; Warren RL
    Curr Protoc; 2022 May; 2(5):e442. PubMed ID: 35567771
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of ONT and CCS sequencing technologies on the polyploid genome of a medicinal plant showed that high error rate of ONT reads are not suitable for self-correction.
    Zeng P; Tian Z; Han Y; Zhang W; Zhou T; Peng Y; Hu H; Cai J
    Chin Med; 2022 Aug; 17(1):94. PubMed ID: 35945546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. QuorUM: An Error Corrector for Illumina Reads.
    Marçais G; Yorke JA; Zimin A
    PLoS One; 2015; 10(6):e0130821. PubMed ID: 26083032
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluating Illumina-, Nanopore-, and PacBio-based genome assembly strategies with the bald notothen, Trematomus borchgrevinki.
    Rayamajhi N; Cheng CC; Catchen JM
    G3 (Bethesda); 2022 Nov; 12(11):. PubMed ID: 35904764
    [TBL] [Abstract][Full Text] [Related]  

  • 9. misFinder: identify mis-assemblies in an unbiased manner using reference and paired-end reads.
    Zhu X; Leung HC; Wang R; Chin FY; Yiu SM; Quan G; Li Y; Zhang R; Jiang Q; Liu B; Dong Y; Zhou G; Wang Y
    BMC Bioinformatics; 2015 Nov; 16():386. PubMed ID: 26573684
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Blue: correcting sequencing errors using consensus and context.
    Greenfield P; Duesing K; Papanicolaou A; Bauer DC
    Bioinformatics; 2014 Oct; 30(19):2723-32. PubMed ID: 24919879
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of strategies for the assembly of diverse bacterial genomes using MinION long-read sequencing.
    Goldstein S; Beka L; Graf J; Klassen JL
    BMC Genomics; 2019 Jan; 20(1):23. PubMed ID: 30626323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aberration-corrected ultrafine analysis of miRNA reads at single-base resolution: a k-mer lattice approach.
    Zhang X; Ping P; Hutvagner G; Blumenstein M; Li J
    Nucleic Acids Res; 2021 Oct; 49(18):e106. PubMed ID: 34291293
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tigmint: correcting assembly errors using linked reads from large molecules.
    Jackman SD; Coombe L; Chu J; Warren RL; Vandervalk BP; Yeo S; Xue Z; Mohamadi H; Bohlmann J; Jones SJM; Birol I
    BMC Bioinformatics; 2018 Oct; 19(1):393. PubMed ID: 30367597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving the sensitivity of long read overlap detection using grouped short k-mer matches.
    Du N; Chen J; Sun Y
    BMC Genomics; 2019 Apr; 20(Suppl 2):190. PubMed ID: 30967123
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved assembly of noisy long reads by k-mer validation.
    Carvalho AB; Dupim EG; Goldstein G
    Genome Res; 2016 Dec; 26(12):1710-1720. PubMed ID: 27831497
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Iterative error correction of long sequencing reads maximizes accuracy and improves contig assembly.
    Sameith K; Roscito JG; Hiller M
    Brief Bioinform; 2017 Jan; 18(1):1-8. PubMed ID: 26868358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving de novo Assembly Based on Read Classification.
    Liao X; Li M; Luo J; Zou Y; Wu FX; Pan Y; Luo F; Wang J
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(1):177-188. PubMed ID: 30059317
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RepAHR: an improved approach for de novo repeat identification by assembly of the high-frequency reads.
    Liao X; Gao X; Zhang X; Wu FX; Wang J
    BMC Bioinformatics; 2020 Oct; 21(1):463. PubMed ID: 33076827
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hybrid assembly of the large and highly repetitive genome of
    Zimin AV; Puiu D; Luo MC; Zhu T; Koren S; Marçais G; Yorke JA; Dvořák J; Salzberg SL
    Genome Res; 2017 May; 27(5):787-792. PubMed ID: 28130360
    [TBL] [Abstract][Full Text] [Related]  

  • 20. LINKS: Scalable, alignment-free scaffolding of draft genomes with long reads.
    Warren RL; Yang C; Vandervalk BP; Behsaz B; Lagman A; Jones SJ; Birol I
    Gigascience; 2015; 4():35. PubMed ID: 26244089
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.