These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 33575622)

  • 21. SAKE: Strobemer-assisted k-mer extraction.
    Leinonen M; Salmela L
    PLoS One; 2023; 18(11):e0294415. PubMed ID: 38019768
    [TBL] [Abstract][Full Text] [Related]  

  • 22. HISEA: HIerarchical SEed Aligner for PacBio data.
    Khiste N; Ilie L
    BMC Bioinformatics; 2017 Dec; 18(1):564. PubMed ID: 29258419
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Illumina error correction near highly repetitive DNA regions improves de novo genome assembly.
    Heydari M; Miclotte G; Van de Peer Y; Fostier J
    BMC Bioinformatics; 2019 Jun; 20(1):298. PubMed ID: 31159722
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optimization of de novo transcriptome assembly from high-throughput short read sequencing data improves functional annotation for non-model organisms.
    Haznedaroglu BZ; Reeves D; Rismani-Yazdi H; Peccia J
    BMC Bioinformatics; 2012 Jul; 13():170. PubMed ID: 22808927
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Benchmarking hybrid assemblies of Giardia and prediction of widespread intra-isolate structural variation.
    Pollo SMJ; Reiling SJ; Wit J; Workentine ML; Guy RA; Batoff GW; Yee J; Dixon BR; Wasmuth JD
    Parasit Vectors; 2020 Feb; 13(1):108. PubMed ID: 32111234
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genome assembly using Nanopore-guided long and error-free DNA reads.
    Madoui MA; Engelen S; Cruaud C; Belser C; Bertrand L; Alberti A; Lemainque A; Wincker P; Aury JM
    BMC Genomics; 2015 Apr; 16(1):327. PubMed ID: 25927464
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluation and Validation of Assembling Corrected PacBio Long Reads for Microbial Genome Completion via Hybrid Approaches.
    Lin HH; Liao YC
    PLoS One; 2015; 10(12):e0144305. PubMed ID: 26641475
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A comprehensive evaluation of long read error correction methods.
    Zhang H; Jain C; Aluru S
    BMC Genomics; 2020 Dec; 21(Suppl 6):889. PubMed ID: 33349243
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Highly accurate long reads are crucial for realizing the potential of biodiversity genomics.
    Hotaling S; Wilcox ER; Heckenhauer J; Stewart RJ; Frandsen PB
    BMC Genomics; 2023 Mar; 24(1):117. PubMed ID: 36927511
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rcorrector: efficient and accurate error correction for Illumina RNA-seq reads.
    Song L; Florea L
    Gigascience; 2015; 4():48. PubMed ID: 26500767
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Accurate self-correction of errors in long reads using de Bruijn graphs.
    Salmela L; Walve R; Rivals E; Ukkonen E
    Bioinformatics; 2017 Mar; 33(6):799-806. PubMed ID: 27273673
    [TBL] [Abstract][Full Text] [Related]  

  • 32.
    Izan S; Esselink D; Visser RGF; Smulders MJM; Borm T
    Front Plant Sci; 2017; 8():1271. PubMed ID: 28824658
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Toward perfect reads: self-correction of short reads via mapping on de Bruijn graphs.
    Limasset A; Flot JF; Peterlongo P
    Bioinformatics; 2020 Mar; 36(5):1374-1381. PubMed ID: 30785192
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Benchmarking multi-platform sequencing technologies for human genome assembly.
    Wang J; Veldsman WP; Fang X; Huang Y; Xie X; Lyu A; Zhang L
    Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37594299
    [TBL] [Abstract][Full Text] [Related]  

  • 35. JASPER: A fast genome polishing tool that improves accuracy of genome assemblies.
    Guo A; Salzberg SL; Zimin AV
    PLoS Comput Biol; 2023 Mar; 19(3):e1011032. PubMed ID: 37000853
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Simultaneous compression of multiple error-corrected short-read sets for faster data transmission and better de novo assemblies.
    Tang T; Hutvagner G; Wang W; Li J
    Brief Funct Genomics; 2022 Sep; 21(5):387-398. PubMed ID: 35848773
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The SAMBA tool uses long reads to improve the contiguity of genome assemblies.
    Zimin AV; Salzberg SL
    PLoS Comput Biol; 2022 Feb; 18(2):e1009860. PubMed ID: 35120119
    [TBL] [Abstract][Full Text] [Related]  

  • 38. LongStitch: high-quality genome assembly correction and scaffolding using long reads.
    Coombe L; Li JX; Lo T; Wong J; Nikolic V; Warren RL; Birol I
    BMC Bioinformatics; 2021 Oct; 22(1):534. PubMed ID: 34717540
    [TBL] [Abstract][Full Text] [Related]  

  • 39. EDAR: an efficient error detection and removal algorithm for next generation sequencing data.
    Zhao X; Palmer LE; Bolanos R; Mircean C; Fasulo D; Wittenberg GM
    J Comput Biol; 2010 Nov; 17(11):1549-60. PubMed ID: 20973743
    [TBL] [Abstract][Full Text] [Related]  

  • 40. NextPolish: a fast and efficient genome polishing tool for long-read assembly.
    Hu J; Fan J; Sun Z; Liu S
    Bioinformatics; 2020 Apr; 36(7):2253-2255. PubMed ID: 31778144
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.