BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 33575850)

  • 1. More than additive effects on liver triglyceride accumulation by combinations of steatotic and non-steatotic pesticides in HepaRG cells.
    Lasch A; Marx-Stoelting P; Braeuning A; Lichtenstein D
    Arch Toxicol; 2021 Apr; 95(4):1397-1411. PubMed ID: 33575850
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An adverse outcome pathway-based approach to assess steatotic mixture effects of hepatotoxic pesticides in vitro.
    Lichtenstein D; Luckert C; Alarcan J; de Sousa G; Gioutlakis M; Katsanou ES; Konstantinidou P; Machera K; Milani ES; Peijnenburg A; Rahmani R; Rijkers D; Spyropoulou A; Stamou M; Stoopen G; Sturla SJ; Wollscheid B; Zucchini-Pascal N; Braeuning A; Lampen A
    Food Chem Toxicol; 2020 May; 139():111283. PubMed ID: 32201337
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pregnane X receptor mediates steatotic effects of propiconazole and tebuconazole in human liver cell lines.
    Knebel C; Buhrke T; Süssmuth R; Lampen A; Marx-Stoelting P; Braeuning A
    Arch Toxicol; 2019 May; 93(5):1311-1322. PubMed ID: 30989312
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigating the in vitro steatotic mixture effects of similarly and dissimilarly acting test compounds using an adverse outcome pathway-based approach.
    Alarcan J; de Sousa G; Katsanou ES; Spyropoulou A; Batakis P; Machera K; Rahmani R; Lampen A; Braeuning A; Lichtenstein D
    Arch Toxicol; 2022 Jan; 96(1):211-229. PubMed ID: 34778935
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An eight-compound mixture but not corresponding concentrations of individual chemicals induces triglyceride accumulation in human liver cells.
    Lichtenstein D; Lasch A; Alarcan J; Mentz A; Kalinowski J; Schmidt FF; Pötz O; Marx-Stoelting P; Braeuning A
    Toxicology; 2021 Jul; 459():152857. PubMed ID: 34273450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adverse Outcome Pathway-Driven Analysis of Liver Steatosis in Vitro: A Case Study with Cyproconazole.
    Luckert C; Braeuning A; de Sousa G; Durinck S; Katsanou ES; Konstantinidou P; Machera K; Milani ES; Peijnenburg AACM; Rahmani R; Rajkovic A; Rijkers D; Spyropoulou A; Stamou M; Stoopen G; Sturla S; Wollscheid B; Zucchini-Pascal N; Lampen A
    Chem Res Toxicol; 2018 Aug; 31(8):784-798. PubMed ID: 29995386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of exendin-4-induced steatosis by protein kinase A in cultured HepG2 human hepatoma cells.
    Chen-Liaw AY; Hammel G; Gomez G
    In Vitro Cell Dev Biol Anim; 2017 Sep; 53(8):721-727. PubMed ID: 28707223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcript and protein marker patterns for the identification of steatotic compounds in human HepaRG cells.
    Lichtenstein D; Mentz A; Schmidt FF; Luckert C; Buhrke T; Marx-Stoelting P; Kalinowski J; Albaum SP; Joos TO; Poetz O; Braeuning A
    Food Chem Toxicol; 2020 Nov; 145():111690. PubMed ID: 32810590
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of Drug Metabolism by the Interplay of Inflammatory Signaling, Steatosis, and Xeno-Sensing Receptors in HepaRG Cells.
    Tanner N; Kubik L; Luckert C; Thomas M; Hofmann U; Zanger UM; Böhmert L; Lampen A; Braeuning A
    Drug Metab Dispos; 2018 Apr; 46(4):326-335. PubMed ID: 29330220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of mixture toxicity of (tri)azoles and their hepatotoxic effects in vitro by means of omics technologies.
    Seeger B; Mentz A; Knebel C; Schmidt F; Bednarz H; Niehaus K; Albaum S; Kalinowski J; Noll T; Steinberg P; Marx-Stoelting P; Heise T
    Arch Toxicol; 2019 Aug; 93(8):2321-2333. PubMed ID: 31254001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Farnesol induces fatty acid oxidation and decreases triglyceride accumulation in steatotic HepaRG cells.
    Pant A; Rondini EA; Kocarek TA
    Toxicol Appl Pharmacol; 2019 Feb; 365():61-70. PubMed ID: 30611723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Propiconazole is an activator of AHR and causes concentration additive effects with an established AHR ligand.
    Knebel C; Kebben J; Eberini I; Palazzolo L; Hammer HS; Süssmuth RD; Heise T; Hessel-Pras S; Lampen A; Braeuning A; Marx-Stoelting P
    Arch Toxicol; 2018 Dec; 92(12):3471-3486. PubMed ID: 30293151
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adverse outcome pathway-based analysis of liver steatosis in vitro using human liver cell lines.
    Karaca M; Fritsche K; Lichtenstein D; Vural Ö; Kreuzer K; Alarcan J; Braeuning A; Marx-Stoelting P; Tralau T
    STAR Protoc; 2023 Sep; 4(3):102500. PubMed ID: 37616165
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combinations of LXR and RXR agonists induce triglyceride accumulation in human HepaRG cells in a synergistic manner.
    Lasch A; Alarcan J; Lampen A; Braeuning A; Lichtenstein D
    Arch Toxicol; 2020 Apr; 94(4):1303-1320. PubMed ID: 32123961
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PPAR agonists reduce steatosis in oleic acid-overloaded HepaRG cells.
    Rogue A; Anthérieu S; Vluggens A; Umbdenstock T; Claude N; de la Moureyre-Spire C; Weaver RJ; Guillouzo A
    Toxicol Appl Pharmacol; 2014 Apr; 276(1):73-81. PubMed ID: 24534255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A targeted transcriptomics approach for the determination of mixture effects of pesticides.
    Lichtenstein D; Mentz A; Sprenger H; Schmidt FF; Albaum SP; Kalinowski J; Planatscher H; Joos TO; Poetz O; Braeuning A
    Toxicology; 2021 Aug; 460():152892. PubMed ID: 34371104
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three widely used pesticides and their mixtures induced cytotoxicity and apoptosis through the ROS-related caspase pathway in HepG2 cells.
    Wang T; Ma M; Chen C; Yang X; Qian Y
    Food Chem Toxicol; 2021 Jun; 152():112162. PubMed ID: 33813062
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of abamectin-based and difenoconazole-based formulations and their mixtures in Daphnia magna: a multiple endpoint approach.
    Moreira RA; de Araujo GS; Silva ARRG; Daam MA; Rocha O; Soares AMVM; Loureiro S
    Ecotoxicology; 2020 Nov; 29(9):1486-1499. PubMed ID: 32388636
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Valproic acid affects fatty acid and triglyceride metabolism in HepaRG cells exposed to fatty acids by different mechanisms.
    Grünig D; Szabo L; Marbet M; Krähenbühl S
    Biochem Pharmacol; 2020 Jul; 177():113860. PubMed ID: 32165129
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advantageous use of HepaRG cells for the screening and mechanistic study of drug-induced steatosis.
    Tolosa L; Gómez-Lechón MJ; Jiménez N; Hervás D; Jover R; Donato MT
    Toxicol Appl Pharmacol; 2016 Jul; 302():1-9. PubMed ID: 27089845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.