These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 33575938)

  • 1. Toward a better understanding of the impact of bioenergy use on mortality rate in EU28 region.
    Alsaleh M; Zubair AO; Abdul-Rahim AS
    Environ Sci Pollut Res Int; 2021 Jun; 28(23):29831-29844. PubMed ID: 33575938
    [TBL] [Abstract][Full Text] [Related]  

  • 2. EU28 region's water security and the effect of bioenergy industry sustainability.
    Alsaleh M; Abdul-Rahim AS; Abdulwakil MM
    Environ Sci Pollut Res Int; 2021 Feb; 28(8):9346-9361. PubMed ID: 33141381
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A global yield dataset for major lignocellulosic bioenergy crops based on field measurements.
    Li W; Ciais P; Makowski D; Peng S
    Sci Data; 2018 Aug; 5():180169. PubMed ID: 30129935
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Life cycle environmental sustainability and cumulative energy assessment of biomass pellets biofuel derived from agroforest residues.
    Rashedi A; Gul N; Hussain M; Hadi R; Khan N; Nadeem SG; Khanam T; Asyraf MRM; Kumar V
    PLoS One; 2022; 17(10):e0275005. PubMed ID: 36206274
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Land-use and alternative bioenergy pathways for waste biomass.
    Campbell JE; Block E
    Environ Sci Technol; 2010 Nov; 44(22):8665-9. PubMed ID: 20883033
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatially explicit LCA analysis of biodiversity losses due to different bioenergy policies in the European Union.
    Di Fulvio F; Forsell N; Korosuo A; Obersteiner M; Hellweg S
    Sci Total Environ; 2019 Feb; 651(Pt 1):1505-1516. PubMed ID: 30360280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioenergy production in Pakistan: Potential, progress, and prospect.
    Khan S; Nisar A; Wu B; Zhu QL; Wang YW; Hu GQ; He MX
    Sci Total Environ; 2022 Mar; 814():152872. PubMed ID: 34990677
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Defining and engineering bioenergy plant feedstock ideotypes.
    Markel K; Belcher MS; Shih PM
    Curr Opin Biotechnol; 2020 Apr; 62():196-201. PubMed ID: 31841969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Climate change mitigation potentials of biofuels produced from perennial crops and natural regrowth on abandoned and degraded cropland in Nordic countries.
    Næss JS; Hu X; Gvein MH; Iordan CM; Cavalett O; Dorber M; Giroux B; Cherubini F
    J Environ Manage; 2023 Jan; 325(Pt A):116474. PubMed ID: 36274301
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The global energy matrix and use of agricultural residues for bioenergy production: A review with inspiring insights that aim to contribute to deliver solutions for society and industrial sectors through suggestions for future research.
    Ribeiro GF; Junior AB
    Waste Manag Res; 2023 Aug; 41(8):1283-1304. PubMed ID: 36856060
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactions among bioenergy feedstock choices, landscape dynamics, and land use.
    Dale VH; Kline KL; Wright LL; Perlack RD; Downing M; Graham RL
    Ecol Appl; 2011 Jun; 21(4):1039-54. PubMed ID: 21774412
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy sorghum--a genetic model for the design of C4 grass bioenergy crops.
    Mullet J; Morishige D; McCormick R; Truong S; Hilley J; McKinley B; Anderson R; Olson SN; Rooney W
    J Exp Bot; 2014 Jul; 65(13):3479-89. PubMed ID: 24958898
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomass Resources: Agriculture.
    Kluts IN; Brinkman MLJ; de Jong SA; Junginger HM
    Adv Biochem Eng Biotechnol; 2019; 166():13-26. PubMed ID: 28432390
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comprehensive review of life cycle assessment (LCA) of microalgal and lignocellulosic bioenergy products from thermochemical processes.
    Ubando AT; Rivera DRT; Chen WH; Culaba AB
    Bioresour Technol; 2019 Nov; 291():121837. PubMed ID: 31353166
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Landscape patterns of bioenergy in a changing climate: implications for crop allocation and land-use competition.
    Graves RA; Pearson SM; Turner MG
    Ecol Appl; 2016 Mar; 26(2):515-29. PubMed ID: 27209792
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Household anaerobic digester for bioenergy production in developing countries: opportunities and challenges.
    Surendra KC; Takara D; Jasinski J; Khanal SK
    Environ Technol; 2013; 34(13-16):1671-89. PubMed ID: 24350427
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Manipulating microRNAs for improved biomass and biofuels from plant feedstocks.
    Trumbo JL; Zhang B; Stewart CN
    Plant Biotechnol J; 2015 Apr; 13(3):337-54. PubMed ID: 25707745
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A mini review on renewable sources for biofuel.
    Ho DP; Ngo HH; Guo W
    Bioresour Technol; 2014 Oct; 169():742-749. PubMed ID: 25115598
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Integrated Landscape Designed for Commodity and Bioenergy Crops for a Tile-Drained Agricultural Watershed.
    Ssegane H; Negri MC
    J Environ Qual; 2016 Sep; 45(5):1588-1596. PubMed ID: 27695735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of the availability of agricultural crop residues in the European Union: potential and limitations for bioenergy use.
    Scarlat N; Martinov M; Dallemand JF
    Waste Manag; 2010 Oct; 30(10):1889-97. PubMed ID: 20494567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.