These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 33575958)

  • 1. On the Use of Computational Fluid Dynamics (CFD) Modelling to Design Improved Dry Powder Inhalers.
    Fletcher DF; Chaugule V; Gomes Dos Reis L; Young PM; Traini D; Soria J
    Pharm Res; 2021 Feb; 38(2):277-288. PubMed ID: 33575958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potential and constraints for the application of CFD combined with Lagrangian particle tracking to dry powder inhalers.
    Sommerfeld M; Cui Y; Schmalfuß S
    Eur J Pharm Sci; 2019 Feb; 128():299-324. PubMed ID: 30553814
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coupled in silico platform: Computational fluid dynamics (CFD) and physiologically-based pharmacokinetic (PBPK) modelling.
    Vulović A; Šušteršič T; Cvijić S; Ibrić S; Filipović N
    Eur J Pharm Sci; 2018 Feb; 113():171-184. PubMed ID: 29054499
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deposition and fine particle production during dynamic flow in a dry powder inhaler: a CFD approach.
    Milenkovic J; Alexopoulos AH; Kiparissides C
    Int J Pharm; 2014 Jan; 461(1-2):129-36. PubMed ID: 24296048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of Computational Fluid Dynamics (CFD) Dispersion Parameters in the Development of a New DPI Actuated with Low Air Volumes.
    Longest W; Farkas D; Bass K; Hindle M
    Pharm Res; 2019 May; 36(8):110. PubMed ID: 31139939
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimating inter-patient variability of dispersion in dry powder inhalers using CFD-DEM simulations.
    Benque B; Khinast JG
    Eur J Pharm Sci; 2021 Jan; 156():105574. PubMed ID: 32980431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CFD-DEM investigation of the effects of aperture size for a capsule-based dry powder inhaler.
    Zhu Q; Kakhi M; Jayasundara C; Walenga R; Behara SRB; Chan HK; Yang R
    Int J Pharm; 2023 Nov; 647():123556. PubMed ID: 37890648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a New Inhaler for High-Efficiency Dispersion of Spray-Dried Powders Using Computational Fluid Dynamics (CFD) Modeling.
    Longest W; Farkas D
    AAPS J; 2019 Feb; 21(2):25. PubMed ID: 30734133
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of device design on the aerosolization of a carrier-based dry powder inhaler--a case study on Aerolizer(®) Foradile (®).
    Zhou QT; Tong Z; Tang P; Citterio M; Yang R; Chan HK
    AAPS J; 2013 Apr; 15(2):511-22. PubMed ID: 23371759
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Capsule-Based dry powder inhaler evaluation using CFD-DEM simulations and next generation impactor data.
    Almeida LC; Bharadwaj R; Eliahu A; Wassgren CR; Nagapudi K; Muliadi AR
    Eur J Pharm Sci; 2022 Aug; 175():106226. PubMed ID: 35643378
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Particle aerosolisation and break-up in dry powder inhalers: evaluation and modelling of impaction effects for agglomerated systems.
    Wong W; Fletcher DF; Traini D; Chan HK; Crapper J; Young PM
    J Pharm Sci; 2011 Jul; 100(7):2744-54. PubMed ID: 21360707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combining experimental and computational techniques to understand and improve dry powder inhalers.
    Chaugule V; Wong CY; Inthavong K; Fletcher DF; Young PM; Soria J; Traini D
    Expert Opin Drug Deliv; 2022 Jan; 19(1):59-73. PubMed ID: 34989629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spiral mouthpiece design in a dry powder inhaler to improve aerosolization.
    Lee HJ; Kwon IH; Lee HG; Kwon YB; Woo HM; Cho SM; Choi YW; Chon J; Kim K; Kim DW; Park CW
    Int J Pharm; 2018 Dec; 553(1-2):149-156. PubMed ID: 30336185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Particle-based coarse-grained approach for simulating dry powder inhaler.
    Liu X; Sulaiman M; Kolehmainen J; Ozel A; Sundaresan S
    Int J Pharm; 2021 Sep; 606():120821. PubMed ID: 34171427
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carrier particle emission and dispersion in transient CFD-DEM simulations of a capsule-based DPI.
    Benque B; Khinast JG
    Eur J Pharm Sci; 2022 Jan; 168():106073. PubMed ID: 34774996
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In-vitro and particle image velocimetry studies of dry powder inhalers.
    Dos Reis LG; Chaugule V; Fletcher DF; Young PM; Traini D; Soria J
    Int J Pharm; 2021 Jan; 592():119966. PubMed ID: 33161040
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational Fluid Dynamics (CFD) Simulations of Spray Drying: Linking Drying Parameters with Experimental Aerosolization Performance.
    Longest PW; Farkas D; Hassan A; Hindle M
    Pharm Res; 2020 May; 37(6):101. PubMed ID: 32440940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Particle aerosolisation and break-up in dry powder inhalers 1: evaluation and modelling of venturi effects for agglomerated systems.
    Wong W; Fletcher DF; Traini D; Chan HK; Crapper J; Young PM
    Pharm Res; 2010 Jul; 27(7):1367-76. PubMed ID: 20372989
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimizing Aerosolization Using Computational Fluid Dynamics in a Pediatric Air-Jet Dry Powder Inhaler.
    Bass K; Farkas D; Longest W
    AAPS PharmSciTech; 2019 Nov; 20(8):329. PubMed ID: 31676991
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational fluid dynamics (CFD) assisted performance evaluation of the Twincer™ disposable high-dose dry powder inhaler.
    de Boer AH; Hagedoorn P; Woolhouse R; Wynn E
    J Pharm Pharmacol; 2012 Sep; 64(9):1316-25. PubMed ID: 22881443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.