These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
616 related articles for article (PubMed ID: 33576013)
1. Mechanistic insights of CRISPR/Cas-mediated genome editing towards enhancing abiotic stress tolerance in plants. Bhat MA; Mir RA; Kumar V; Shah AA; Zargar SM; Rahman S; Jan AT Physiol Plant; 2021 Jun; 172(2):1255-1268. PubMed ID: 33576013 [TBL] [Abstract][Full Text] [Related]
2. Engineering abiotic stress tolerance via CRISPR/ Cas-mediated genome editing. Zafar SA; Zaidi SS; Gaba Y; Singla-Pareek SL; Dhankher OP; Li X; Mansoor S; Pareek A J Exp Bot; 2020 Jan; 71(2):470-479. PubMed ID: 31644801 [TBL] [Abstract][Full Text] [Related]
3. State-of-the-Art in CRISPR Technology and Engineering Drought, Salinity, and Thermo-tolerant crop plants. Chennakesavulu K; Singh H; Trivedi PK; Jain M; Yadav SR Plant Cell Rep; 2022 Mar; 41(3):815-831. PubMed ID: 33742256 [TBL] [Abstract][Full Text] [Related]
4. Potential Application of CRISPR/Cas9 System to Engineer Abiotic Stress Tolerance in Plants. Ahmed T; Noman M; Shahid M; Muhammad S; Tahir Ul Qamar M; Ali MA; Maqsood A; Hafeez R; Ogunyemi SO; Li B Protein Pept Lett; 2021; 28(8):861-877. PubMed ID: 33602066 [TBL] [Abstract][Full Text] [Related]
5. Engineering drought and salinity tolerance traits in crops through CRISPR-mediated genome editing: Targets, tools, challenges, and perspectives. Shelake RM; Kadam US; Kumar R; Pramanik D; Singh AK; Kim JY Plant Commun; 2022 Nov; 3(6):100417. PubMed ID: 35927945 [TBL] [Abstract][Full Text] [Related]
6. The era of editing plant genomes using CRISPR/Cas: A critical appraisal. Bhat MA; Bhat MA; Kumar V; Wani IA; Bashir H; Shah AA; Rahman S; Jan AT J Biotechnol; 2020 Dec; 324():34-60. PubMed ID: 32980369 [TBL] [Abstract][Full Text] [Related]
7. Modern Trends in Plant Genome Editing: An Inclusive Review of the CRISPR/Cas9 Toolbox. Razzaq A; Saleem F; Kanwal M; Mustafa G; Yousaf S; Imran Arshad HM; Hameed MK; Khan MS; Joyia FA Int J Mol Sci; 2019 Aug; 20(16):. PubMed ID: 31430902 [TBL] [Abstract][Full Text] [Related]
8. CRISPR/Cas: A powerful tool for gene function study and crop improvement. Zhang D; Zhang Z; Unver T; Zhang B J Adv Res; 2021 Mar; 29():207-221. PubMed ID: 33842017 [TBL] [Abstract][Full Text] [Related]
9. Alternative Strategies for Multi-Stress Tolerance and Yield Improvement in Millets. Numan M; Serba DD; Ligaba-Osena A Genes (Basel); 2021 May; 12(5):. PubMed ID: 34068886 [TBL] [Abstract][Full Text] [Related]
10. Engineering Abiotic Stress Tolerance in Crop Plants through CRISPR Genome Editing. Rahman MU; Zulfiqar S; Raza MA; Ahmad N; Zhang B Cells; 2022 Nov; 11(22):. PubMed ID: 36429019 [TBL] [Abstract][Full Text] [Related]
11. Genome Editing in Plants: Exploration of Technological Advancements and Challenges. Vats S; Kumawat S; Kumar V; Patil GB; Joshi T; Sonah H; Sharma TR; Deshmukh R Cells; 2019 Nov; 8(11):. PubMed ID: 31689989 [TBL] [Abstract][Full Text] [Related]
12. Engineering drought tolerance in plants through CRISPR/Cas genome editing. Joshi RK; Bharat SS; Mishra R 3 Biotech; 2020 Sep; 10(9):400. PubMed ID: 32864285 [TBL] [Abstract][Full Text] [Related]
13. Genome editing using CRISPR/Cas9-targeted mutagenesis: An opportunity for yield improvements of crop plants grown under environmental stresses. Abdelrahman M; Al-Sadi AM; Pour-Aboughadareh A; Burritt DJ; Tran LP Plant Physiol Biochem; 2018 Oct; 131():31-36. PubMed ID: 29628199 [TBL] [Abstract][Full Text] [Related]
14. Adoption of CRISPR-Cas for crop production: present status and future prospects. Akanmu AO; Asemoloye MD; Marchisio MA; Babalola OO PeerJ; 2024; 12():e17402. PubMed ID: 38860212 [TBL] [Abstract][Full Text] [Related]
15. CRISPR/Cas Genome Editing Technologies for Plant Improvement against Biotic and Abiotic Stresses: Advances, Limitations, and Future Perspectives. Wang Y; Zafar N; Ali Q; Manghwar H; Wang G; Yu L; Ding X; Ding F; Hong N; Wang G; Jin S Cells; 2022 Dec; 11(23):. PubMed ID: 36497186 [TBL] [Abstract][Full Text] [Related]
16. CRISPR/Cas tool designs for multiplex genome editing and its applications in developing biotic and abiotic stress-resistant crop plants. Singh J; Sharma D; Brar GS; Sandhu KS; Wani SH; Kashyap R; Kour A; Singh S Mol Biol Rep; 2022 Dec; 49(12):11443-11467. PubMed ID: 36002653 [TBL] [Abstract][Full Text] [Related]
17. CRISPR-Cas9-based genetic engineering for crop improvement under drought stress. Sami A; Xue Z; Tazein S; Arshad A; He Zhu Z; Ping Chen Y; Hong Y; Tian Zhu X; Jin Zhou K Bioengineered; 2021 Dec; 12(1):5814-5829. PubMed ID: 34506262 [TBL] [Abstract][Full Text] [Related]
18. Expanding Gene-Editing Potential in Crop Improvement with Pangenomes. Tay Fernandez CG; Nestor BJ; Danilevicz MF; Marsh JI; Petereit J; Bayer PE; Batley J; Edwards D Int J Mol Sci; 2022 Feb; 23(4):. PubMed ID: 35216392 [TBL] [Abstract][Full Text] [Related]
19. CRISPR/Cas9 opens new horizon of crop improvement under stress condition. Patra S; Chatterjee D; Basak S; Sen S; Mandal A Biochim Biophys Acta Gen Subj; 2024 Oct; 1868(10):130685. PubMed ID: 39079650 [TBL] [Abstract][Full Text] [Related]