These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 33576638)

  • 21. Stability of Surface Nanobubbles: A Molecular Dynamics Study.
    Maheshwari S; van der Hoef M; Zhang X; Lohse D
    Langmuir; 2016 Nov; 32(43):11116-11122. PubMed ID: 27064101
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhanced fluctuation for pinned surface nanobubbles.
    Guo Z; Zhang X
    Phys Rev E; 2019 Nov; 100(5-1):052803. PubMed ID: 31869961
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ultrahigh Density of Gas Molecules Confined in Surface Nanobubbles in Ambient Water.
    Zhou L; Wang X; Shin HJ; Wang J; Tai R; Zhang X; Fang H; Xiao W; Wang L; Wang C; Gao X; Hu J; Zhang L
    J Am Chem Soc; 2020 Mar; 142(12):5583-5593. PubMed ID: 32111116
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Dynamic Steady State of an Electrochemically Generated Nanobubble.
    Liu Y; Edwards MA; German SR; Chen Q; White HS
    Langmuir; 2017 Feb; 33(8):1845-1853. PubMed ID: 28125882
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A unified mechanism for the stability of surface nanobubbles: contact line pinning and supersaturation.
    Liu Y; Zhang X
    J Chem Phys; 2014 Oct; 141(13):134702. PubMed ID: 25296823
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Free radical degradation in aqueous solution by blowing hydrogen and carbon dioxide nanobubbles.
    Fujita T; Kurokawa H; Han Z; Zhou Y; Matsui H; Ponou J; Dodbiba G; He C; Wei Y
    Sci Rep; 2021 Feb; 11(1):3068. PubMed ID: 33542381
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Investigating Interfacial Effects on Surface Nanobubbles without Pinning Using Molecular Dynamics Simulation.
    Chen YX; Chen YL; Yen TH
    Langmuir; 2018 Dec; 34(50):15360-15369. PubMed ID: 30480451
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Natural Gas Evolution in a Gas Hydrate Melt: Effect of Thermodynamic Hydrate Inhibitors.
    Sujith KS; Ramachandran CN
    J Phys Chem B; 2017 Jan; 121(1):153-163. PubMed ID: 27935719
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Surface charge-induced EDL interaction on the contact angle of surface nanobubbles.
    Jing D; Li D; Pan Y; Bhushan B
    Langmuir; 2016 Nov; 32(43):11123-11132. PubMed ID: 27258966
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Forced oscillation dynamics of surface nanobubbles.
    Dockar D; Gibelli L; Borg MK
    J Chem Phys; 2020 Nov; 153(18):184705. PubMed ID: 33187431
    [TBL] [Abstract][Full Text] [Related]  

  • 31. AFM Study of Surface Nanobubbles on Binary Self-Assembled Monolayers on Ultraflat Gold with Identical Macroscopic Static Water Contact Angles and Different Terminal Functional Groups.
    Song B; Chen K; Schmittel M; Schönherr H
    Langmuir; 2016 Nov; 32(43):11172-11178. PubMed ID: 27297876
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Advanced dynamic-equilibrium model for a nanobubble and a micropancake on a hydrophobic or hydrophilic surface.
    Yasui K; Tuziuti T; Kanematsu W; Kato K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):033008. PubMed ID: 25871203
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Is surface tension reduced by nanobubbles (ultrafine bubbles) generated by cavitation?
    Yasui K; Tuziuti T; Izu N; Kanematsu W
    Ultrason Sonochem; 2019 Apr; 52():13-18. PubMed ID: 30606678
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Leakiness of Pinned Neighboring Surface Nanobubbles Induced by Strong Gas-Surface Interaction.
    Maheshwari S; van der Hoef M; Rodrı Guez Rodrı Guez J; Lohse D
    ACS Nano; 2018 Mar; 12(3):2603-2609. PubMed ID: 29438620
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of the interaction between AFM tips and surface nanobubbles.
    Walczyk W; Schönherr H
    Langmuir; 2014 Jun; 30(24):7112-26. PubMed ID: 24856074
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nanobubble stability induced by contact line pinning.
    Liu Y; Zhang X
    J Chem Phys; 2013 Jan; 138(1):014706. PubMed ID: 23298056
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hydroxide and Hydronium Ions Modulate the Dynamic Evolution of Nitrogen Nanobubbles in Water.
    Zhang P; Chen C; Feng M; Sun C; Xu X
    J Am Chem Soc; 2024 Jul; 146(28):19537-19546. PubMed ID: 38949461
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ion-Specific and Thermal Effects in the Stabilization of the Gas Nanobubble Phase in Bulk Aqueous Electrolyte Solutions.
    Yurchenko SO; Shkirin AV; Ninham BW; Sychev AA; Babenko VA; Penkov NV; Kryuchkov NP; Bunkin NF
    Langmuir; 2016 Nov; 32(43):11245-11255. PubMed ID: 27350310
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Surface enrichment of ions leads to the stability of bulk nanobubbles.
    Zhang H; Guo Z; Zhang X
    Soft Matter; 2020 Jun; 16(23):5470-5477. PubMed ID: 32484196
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Monitoring nanobubble nucleation at early-stage within a sub-9 nm solid-state nanopore.
    Li Q; Ying YL; Hu YX; Liu SC; Long YT
    Electrophoresis; 2020 Jun; 41(10-11):959-965. PubMed ID: 31652002
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.