These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 33576645)

  • 1. Plasmon-Induced Trap State Emission from Single Quantum Dots.
    Huang J; Ojambati OS; Chikkaraddy R; Sokołowski K; Wan Q; Durkan C; Scherman OA; Baumberg JJ
    Phys Rev Lett; 2021 Jan; 126(4):047402. PubMed ID: 33576645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmon-Assisted Suppression of Surface Trap States and Enhanced Band-Edge Emission in a Bare CdTe Quantum Dot.
    Flatae AM; Tantussi F; Messina GC; De Angelis F; Agio M
    J Phys Chem Lett; 2019 Jun; 10(11):2874-2878. PubMed ID: 31084012
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trap state mediated triplet energy transfer from CdSe quantum dots to molecular acceptors.
    Jin T; Lian T
    J Chem Phys; 2020 Aug; 153(7):074703. PubMed ID: 32828113
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of Surface Morphology on Exciton Recombination in Single Quantum Dot-in-Rods Revealed by Optical and Atomic Structure Correlation.
    Reid KR; McBride JR; La Croix AD; Freymeyer NJ; Click SM; Macdonald JE; Rosenthal SJ
    ACS Nano; 2018 Nov; 12(11):11434-11445. PubMed ID: 30403844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemical Modulation of the Photophysics of Surface-Localized Trap States in Core/Shell/(Shell) Quantum Dot Films.
    van der Stam W; Grimaldi G; Geuchies JJ; Gudjonsdottir S; van Uffelen PT; van Overeem M; Brynjarsson B; Kirkwood N; Houtepen AJ
    Chem Mater; 2019 Oct; 31(20):8484-8493. PubMed ID: 31666761
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoinduced dynamics in semiconductor quantum dots: insights from time-domain ab initio studies.
    Prezhdo OV
    Acc Chem Res; 2009 Dec; 42(12):2005-16. PubMed ID: 19888715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strong increase in the effective two-photon absorption cross-section of excitons in quantum dots due to the nonlinear interaction with localized plasmons in gold nanorods.
    Krivenkov V; Samokhvalov P; Sánchez-Iglesias A; Grzelczak M; Nabiev I; Rakovich Y
    Nanoscale; 2021 Mar; 13(8):4614-4623. PubMed ID: 33605966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light-emitting quantum dot transistors: emission at high charge carrier densities.
    Schornbaum J; Zakharko Y; Held M; Thiemann S; Gannott F; Zaumseil J
    Nano Lett; 2015 Mar; 15(3):1822-8. PubMed ID: 25652433
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strong Coupling of Carbon Quantum Dots in Plasmonic Nanocavities.
    Katzen JM; Tserkezis C; Cai Q; Li LH; Kim JM; Lee G; Yi GR; Hendren WR; Santos EJG; Bowman RM; Huang F
    ACS Appl Mater Interfaces; 2020 Apr; 12(17):19866-19873. PubMed ID: 32267669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quasi-type II CuInS
    Wu K; Liang G; Kong D; Chen J; Chen Z; Shan X; McBride JR; Lian T
    Chem Sci; 2016 Feb; 7(2):1238-1244. PubMed ID: 29910880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A multi-timescale map of radiative and nonradiative decay pathways for excitons in CdSe quantum dots.
    Knowles KE; McArthur EA; Weiss EA
    ACS Nano; 2011 Mar; 5(3):2026-35. PubMed ID: 21361353
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface Chemistry of Semiconducting Quantum Dots: Theoretical Perspectives.
    Kilina SV; Tamukong PK; Kilin DS
    Acc Chem Res; 2016 Oct; 49(10):2127-2135. PubMed ID: 27669357
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Excitation wavelength dependent photon anti-bunching/bunching from single quantum dots near gold nanostructures.
    Dey S; Zhou Y; Sun Y; Jenkins JA; Kriz D; Suib SL; Chen O; Zou S; Zhao J
    Nanoscale; 2018 Jan; 10(3):1038-1046. PubMed ID: 29265148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generation of Multiple Excitons in Ag2S Quantum Dots: Single High-Energy versus Multiple-Photon Excitation.
    Sun J; Yu W; Usman A; Isimjan TT; DGobbo S; Alarousu E; Takanabe K; Mohammed OF
    J Phys Chem Lett; 2014 Feb; 5(4):659-65. PubMed ID: 26270833
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Designable luminescence with quantum dot-silver plasmon coupler.
    Hu L; Wu H; Zhang B; Du L; Xu T; Chen Y; Zhang Y
    Small; 2014 Aug; 10(15):3099-109. PubMed ID: 24711344
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Importance of excitonic effect in charge separation at quantum-dot/organic interface: first-principles many-body calculations.
    Lee D; DuBois JL; Kanai Y
    Nano Lett; 2014 Dec; 14(12):6884-8. PubMed ID: 25388898
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exciton Recombination, Energy-, and Charge Transfer in Single- and Multilayer Quantum-Dot Films on Silver Plasmonic Resonators.
    Shin T; Cho KS; Yun DJ; Kim J; Li XS; Moon ES; Baik CW; Il Kim S; Kim M; Choi JH; Park GS; Shin JK; Hwang S; Jung TS
    Sci Rep; 2016 May; 6():26204. PubMed ID: 27184469
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selectively Addressing Plasmonic Modes and Excitonic States in a Nanocavity Hosting a Quantum Emitter.
    Martín-Jiménez A; Jover Ó; Lauwaet K; Granados D; Miranda R; Otero R
    Nano Lett; 2022 Dec; 22(23):9283-9289. PubMed ID: 36441511
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Organic molecules as tools to control the growth, surface structure, and redox activity of colloidal quantum dots.
    Weiss EA
    Acc Chem Res; 2013 Nov; 46(11):2607-15. PubMed ID: 23734589
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrical control of single-photon emission in highly charged individual colloidal quantum dots.
    Morozov S; Pensa EL; Khan AH; Polovitsyn A; Cortés E; Maier SA; Vezzoli S; Moreels I; Sapienza R
    Sci Adv; 2020 Sep; 6(38):. PubMed ID: 32948584
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.