These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 33576990)

  • 1. Linking Microbes to Their Genes at Single Cell Level with Direct-geneFISH.
    Barrero-Canosa J; Moraru C
    Methods Mol Biol; 2021; 2246():169-205. PubMed ID: 33576990
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct-geneFISH: a simplified protocol for the simultaneous detection and quantification of genes and rRNA in microorganisms.
    Barrero-Canosa J; Moraru C; Zeugner L; Fuchs BM; Amann R
    Environ Microbiol; 2017 Jan; 19(1):70-82. PubMed ID: 27348074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PhageFISH for Monitoring Phage Infections at Single Cell Level.
    Barrero-Canosa J; Moraru C
    Methods Mol Biol; 2019; 1898():1-26. PubMed ID: 30570719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of an alkene monooxygenase in vinyl chloride-oxidizing bacteria with GeneFISH.
    Richards PM; Mattes TE
    J Microbiol Methods; 2021 Feb; 181():106147. PubMed ID: 33493490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GeneFISH--an in situ technique for linking gene presence and cell identity in environmental microorganisms.
    Moraru C; Lam P; Fuchs BM; Kuypers MM; Amann R
    Environ Microbiol; 2010 Nov; 12(11):3057-73. PubMed ID: 20629705
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Introduction to Fluorescence in situ Hybridization in Microorganisms.
    Almeida C; Azevedo NF
    Methods Mol Biol; 2021; 2246():1-15. PubMed ID: 33576979
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gene-PROBER - a tool to design polynucleotide probes for targeting microbial genes.
    Moraru C
    Syst Appl Microbiol; 2021 Jan; 44(1):126173. PubMed ID: 33352459
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of single copy genes by two-pass tyramide signal amplification fluorescence in situ hybridization (Two-Pass TSA-FISH) with single oligonucleotide probes.
    Kawakami S; Kubota K; Imachi H; Yamaguchi T; Harada H; Ohashi A
    Microbes Environ; 2010; 25(1):15-21. PubMed ID: 21576847
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FISH in Suspension or in Adherent Cells.
    Di Pippo F; Queirós D; Pereira J; Lemos PC; Serafim LS; Rossetti S
    Methods Mol Biol; 2021; 2246():51-67. PubMed ID: 33576982
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of single-copy functional genes in prokaryotic cells by two-pass TSA-FISH with polynucleotide probes.
    Kawakami S; Hasegawa T; Imachi H; Yamaguchi T; Harada H; Ohashi A; Kubota K
    J Microbiol Methods; 2012 Feb; 88(2):218-23. PubMed ID: 22172287
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flow cytometric sorting of fecal bacteria after in situ hybridization with polynucleotide probes.
    Bruder LM; Dörkes M; Fuchs BM; Ludwig W; Liebl W
    Syst Appl Microbiol; 2016 Oct; 39(7):464-475. PubMed ID: 27665238
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A straightforward DOPE (double labeling of oligonucleotide probes)-FISH (fluorescence in situ hybridization) method for simultaneous multicolor detection of six microbial populations.
    Behnam F; Vilcinskas A; Wagner M; Stoecker K
    Appl Environ Microbiol; 2012 Aug; 78(15):5138-42. PubMed ID: 22582069
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recognition of individual genes in a single bacterial cell by fluorescence in situ hybridization--RING-FISH.
    Zwirglmaier K; Ludwig W; Schleifer KH
    Mol Microbiol; 2004 Jan; 51(1):89-96. PubMed ID: 14651613
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 16S rRNA-targeted oligonucleotide probes for direct detection of Propionibacterium freudenreichii in presence of Lactococcus lactis with multicolour fluorescence in situ hybridization.
    Mikš-Krajnik M; Babuchowski A
    Lett Appl Microbiol; 2014 Sep; 59(3):320-7. PubMed ID: 24814284
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of prokaryotic cells with fluorescence in situ hybridization.
    Zwirglmaier K
    Methods Mol Biol; 2010; 659():349-62. PubMed ID: 20809326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of denitrification genes by in situ rolling circle amplification-fluorescence in situ hybridization to link metabolic potential with identity inside bacterial cells.
    Hoshino T; Schramm A
    Environ Microbiol; 2010 Sep; 12(9):2508-17. PubMed ID: 20406291
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New trends in fluorescence in situ hybridization for identification and functional analyses of microbes.
    Wagner M; Haider S
    Curr Opin Biotechnol; 2012 Feb; 23(1):96-102. PubMed ID: 22079351
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence in situ hybridization for the identification of environmental microbes.
    Pernthaler A; Pernthaler J
    Methods Mol Biol; 2007; 353():153-64. PubMed ID: 17332640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oligonucleotide probes for RNA-targeted fluorescence in situ hybridization.
    Silverman AP; Kool ET
    Adv Clin Chem; 2007; 43():79-115. PubMed ID: 17249381
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential sensitivity of 16S rRNA targeted oligonucleotide probes used for fluorescence in situ hybridization is a result of ribosomal higher order structure.
    Frischer ME; Floriani PJ; Nierzwicki-Bauer SA
    Can J Microbiol; 1996 Oct; 42(10):1061-71. PubMed ID: 8890483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.