These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 33576996)

  • 1. FISH in Food Samples.
    Rocha R; Almeida C; Azevedo NF
    Methods Mol Biol; 2021; 2246():279-290. PubMed ID: 33576996
    [TBL] [Abstract][Full Text] [Related]  

  • 2. From hazard analysis to risk control using rapid methods in microbiology: A practical approach for the food industry.
    Ripolles-Avila C; Martínez-Garcia M; Capellas M; Yuste J; Fung DYC; Rodríguez-Jerez JJ
    Compr Rev Food Sci Food Saf; 2020 Jul; 19(4):1877-1907. PubMed ID: 33337076
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An overview of foodborne pathogen detection: in the perspective of biosensors.
    Velusamy V; Arshak K; Korostynska O; Oliwa K; Adley C
    Biotechnol Adv; 2010; 28(2):232-54. PubMed ID: 20006978
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Current Technical Approaches for the Early Detection of Foodborne Pathogens: Challenges and Opportunities.
    Cho IH; Ku S
    Int J Mol Sci; 2017 Sep; 18(10):. PubMed ID: 28974002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and application of Peptide Nucleic Acid Fluorescence in situ Hybridization for the specific detection of Listeria monocytogenes.
    Rocha R; Sousa JM; Cerqueira L; Vieira MJ; Almeida C; Azevedo NF
    Food Microbiol; 2019 Jun; 80():1-8. PubMed ID: 30704592
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of Hyperspectral Imaging as a Nondestructive Technique for Foodborne Pathogen Detection and Characterization.
    Bonah E; Huang X; Aheto JH; Osae R
    Foodborne Pathog Dis; 2019 Oct; 16(10):712-722. PubMed ID: 31305129
    [TBL] [Abstract][Full Text] [Related]  

  • 7. EIS-Based Biosensors in Foodborne Pathogen Detection with a Special Focus on Listeria monocytogenes.
    Poltronieri P; Primiceri E; Radhakrishnan R
    Methods Mol Biol; 2019; 1918():87-101. PubMed ID: 30580401
    [TBL] [Abstract][Full Text] [Related]  

  • 8. FISHing for bacteria in food--a promising tool for the reliable detection of pathogenic bacteria?
    Rohde A; Hammerl JA; Appel B; Dieckmann R; Al Dahouk S
    Food Microbiol; 2015 Apr; 46():395-407. PubMed ID: 25475309
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An overview of transducers as platform for the rapid detection of foodborne pathogens.
    Arora P; Sindhu A; Kaur H; Dilbaghi N; Chaudhury A
    Appl Microbiol Biotechnol; 2013 Mar; 97(5):1829-40. PubMed ID: 23329385
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of Biosensors for Detection of Pathogenic Food Bacteria: A Review.
    Ali AA; Altemimi AB; Alhelfi N; Ibrahim SA
    Biosensors (Basel); 2020 May; 10(6):. PubMed ID: 32486225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemical immunosensors for Salmonella detection in food.
    Melo AM; Alexandre DL; Furtado RF; Borges MF; Figueiredo EA; Biswas A; Cheng HN; Alves CR
    Appl Microbiol Biotechnol; 2016 Jun; 100(12):5301-12. PubMed ID: 27138197
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-fouling surface plasmon resonance biosensor for multi-step detection of foodborne bacterial pathogens in complex food samples.
    Vaisocherová-Lísalová H; Víšová I; Ermini ML; Špringer T; Song XC; Mrázek J; Lamačová J; Scott Lynn N; Šedivák P; Homola J
    Biosens Bioelectron; 2016 Jun; 80():84-90. PubMed ID: 26807521
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficiency of fluorescence in situ hybridization (FISH) method for the rapid detection of Salmonella in minced lamb meat: Method analysis and optimization.
    Salimi G; Mousavi ZE; Kiani H
    J Microbiol Methods; 2020 Aug; 175():105989. PubMed ID: 32603757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Current Scenario of Pathogen Detection Techniques in Agro-Food Sector.
    Nehra M; Kumar V; Kumar R; Dilbaghi N; Kumar S
    Biosensors (Basel); 2022 Jul; 12(7):. PubMed ID: 35884292
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Food pathogen and toxin detection.
    Baeumner A
    Anal Bioanal Chem; 2008 May; 391(2):449-50. PubMed ID: 18369600
    [No Abstract]   [Full Text] [Related]  

  • 16. Advanced molecular diagnostic techniques for detection of food-borne pathogens: Current applications and future challenges.
    Umesha S; Manukumar HM
    Crit Rev Food Sci Nutr; 2018 Jan; 58(1):84-104. PubMed ID: 26745757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advances in rapid detection methods for foodborne pathogens.
    Zhao X; Lin CW; Wang J; Oh DH
    J Microbiol Biotechnol; 2014 Mar; 24(3):297-312. PubMed ID: 24375418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Next generation sequencing-based multigene panel for high throughput detection of food-borne pathogens.
    Ferrario C; Lugli GA; Ossiprandi MC; Turroni F; Milani C; Duranti S; Mancabelli L; Mangifesta M; Alessandri G; van Sinderen D; Ventura M
    Int J Food Microbiol; 2017 Sep; 256():20-29. PubMed ID: 28578266
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic devices for sample preparation and rapid detection of foodborne pathogens.
    Kant K; Shahbazi MA; Dave VP; Ngo TA; Chidambara VA; Than LQ; Bang DD; Wolff A
    Biotechnol Adv; 2018; 36(4):1003-1024. PubMed ID: 29534915
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular Detection of Foodborne Pathogens: A Rapid and Accurate Answer to Food Safety.
    Mangal M; Bansal S; Sharma SK; Gupta RK
    Crit Rev Food Sci Nutr; 2016 Jul; 56(9):1568-84. PubMed ID: 25830555
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.