These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 33577287)

  • 21. Ordered structure rearrangements in heated gold nanocrystal superlattices.
    Goodfellow BW; Rasch MR; Hessel CM; Patel RN; Smilgies DM; Korgel BA
    Nano Lett; 2013; 13(11):5710-4. PubMed ID: 24131332
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Energetic and entropic contributions to self-assembly of binary nanocrystal superlattices: temperature as the structure-directing factor.
    Bodnarchuk MI; Kovalenko MV; Heiss W; Talapin DV
    J Am Chem Soc; 2010 Sep; 132(34):11967-77. PubMed ID: 20701285
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In Situ Constructing the Kinetic Roadmap of Octahedral Nanocrystal Assembly Toward Controlled Superlattice Fabrication.
    Huang X; Zhu J; Ge B; Gerdes F; Klinke C; Wang Z
    J Am Chem Soc; 2021 Mar; 143(11):4234-4243. PubMed ID: 33687203
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Core-shell reconfiguration through thermal annealing in Fe(x)O/CoFe2O4 ordered 2D nanocrystal arrays.
    Yalcin AO; de Nijs B; Fan Z; Tichelaar FD; Vanmaekelbergh D; van Blaaderen A; Vlugt TJ; van Huis MA; Zandbergen HW
    Nanotechnology; 2014 Feb; 25(5):055601. PubMed ID: 24407270
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Anisotropic Cracking of Nanocrystal Superlattices.
    Diroll BT; Ma X; Wu Y; Murray CB
    Nano Lett; 2017 Oct; 17(10):6501-6506. PubMed ID: 28921994
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Revisit of Pressure-Induced Phase Transition in PbSe: Crystal Structure, and Thermoelastic and Electrical Properties.
    Wang S; Zang C; Wang Y; Wang L; Zhang J; Childs C; Ge H; Xu H; Chen H; He D; Zhao Y
    Inorg Chem; 2015 May; 54(10):4981-9. PubMed ID: 25938257
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Application of Dislocation Theory to Minimize Defects in Artificial Solids Built with Nanocrystal Building Blocks.
    Ondry JC; Alivisatos AP
    Acc Chem Res; 2021 Mar; 54(6):1419-1429. PubMed ID: 33576596
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In Situ Atomic-Scale Observation of Droplet Coalescence Driven Nucleation and Growth at Liquid/Solid Interfaces.
    Li J; Wang Z; Deepak FL
    ACS Nano; 2017 Jun; 11(6):5590-5597. PubMed ID: 28538094
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Coexistence of hcp and bct Phases during In Situ Superlattice Assembly from Faceted Colloidal Nanocrystals.
    Lokteva I; Koof M; Walther M; Grübel G; Lehmkühler F
    J Phys Chem Lett; 2019 Oct; 10(20):6331-6338. PubMed ID: 31578064
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Self-Assembly and Thermal Stability of Binary Superlattices of Gold and Silicon Nanocrystals.
    Yu Y; Bosoy CA; Smilgies DM; Korgel BA
    J Phys Chem Lett; 2013 Oct; 4(21):. PubMed ID: 24327828
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The nanocrystal superlattice pressure cell: a novel approach to study molecular bundles under uniaxial compression.
    Bian K; Singh AK; Hennig RG; Wang Z; Hanrath T
    Nano Lett; 2014 Aug; 14(8):4763-6. PubMed ID: 25046038
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Melting and Sintering of a Body-Centered Cubic Superlattice of PbSe Nanocrystals Followed by Small Angle X-ray Scattering.
    Goodfellow BW; Patel RN; Panthani MG; Smilgies DM; Korgel BA
    J Phys Chem C Nanomater Interfaces; 2011 Apr; 115(14):6397-6404. PubMed ID: 21566701
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Site-Specific Ligand Interactions Favor the Tetragonal Distortion of PbS Nanocrystal Superlattices.
    Novák J; Banerjee R; Kornowski A; Jankowski M; André A; Weller H; Schreiber F; Scheele M
    ACS Appl Mater Interfaces; 2016 Aug; 8(34):22526-33. PubMed ID: 27504626
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Kinetics of the self-assembly of nanocrystal superlattices measured by real-time in situ X-ray scattering.
    Weidman MC; Smilgies DM; Tisdale WA
    Nat Mater; 2016 Jul; 15(7):775-81. PubMed ID: 26998914
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Large-Scale, Long-Range-Ordered Patterning of Nanocrystals via Capillary-Bridge Manipulation.
    Feng J; Song Q; Zhang B; Wu Y; Wang T; Jiang L
    Adv Mater; 2017 Dec; 29(46):. PubMed ID: 29059508
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interfacial Self-Assembly and Oriented Attachment in the Family of PbX (X = S, Se, Te) Nanocrystals.
    van Overbeek C; Peters JL; van Rossum SAP; Smits M; van Huis MA; Vanmaekelbergh D
    J Phys Chem C Nanomater Interfaces; 2018 Jun; 122(23):12464-12473. PubMed ID: 29930743
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Revealing Grain Boundaries and Defect Formation in Nanocrystal Superlattices by Nanodiffraction.
    Mukharamova N; Lapkin D; Zaluzhnyy IA; André A; Lazarev S; Kim YY; Sprung M; Kurta RP; Schreiber F; Vartanyants IA; Scheele M
    Small; 2019 Dec; 15(50):e1904954. PubMed ID: 31729151
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Solvothermal synthesis and controlled self-assembly of monodisperse titanium-based perovskite colloidal nanocrystals.
    Caruntu D; Rostamzadeh T; Costanzo T; Parizi SS; Caruntu G
    Nanoscale; 2015 Aug; 7(30):12955-69. PubMed ID: 26168304
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In Situ Atomic-Scale Studies of the Formation of Epitaxial Pt Nanocrystals on Monolayer Molybdenum Disulfide.
    Wang S; Sawada H; Chen Q; Han GGD; Allen C; Kirkland AI; Warner JH
    ACS Nano; 2017 Sep; 11(9):9057-9067. PubMed ID: 28806068
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Orientationally Ordered Silicon Nanocrystal Cuboctahedra in Superlattices.
    Yu Y; Lu X; Guillaussier A; Voggu VR; Pineros W; de la Mata M; Arbiol J; Smilgies DM; Truskett TM; Korgel BA
    Nano Lett; 2016 Dec; 16(12):7814-7821. PubMed ID: 27960489
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.