These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 33577531)

  • 21. Imaging properties in two-photon excitation microscopy and effects of refractive-index mismatch in thick specimens.
    de Grauw CJ; Vroom JM; van der Voort HT; Gerritsen HC
    Appl Opt; 1999 Oct; 38(28):5995-6003. PubMed ID: 18324119
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High numerical aperture hybrid optics for two-photon polymerization.
    Burmeister F; Zeitner UD; Nolte S; Tünnermann A
    Opt Express; 2012 Mar; 20(7):7994-8005. PubMed ID: 22453471
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Surface plasmon resonance microscopy: Achieving a quantitative optical response.
    Peterson AW; Halter M; Plant AL; Elliott JT
    Rev Sci Instrum; 2016 Sep; 87(9):093703. PubMed ID: 27782542
    [TBL] [Abstract][Full Text] [Related]  

  • 24. MEMS-in-the-lens architecture for a miniature high-NA laser scanning microscope.
    Liu T; Rajadhyaksha M; Dickensheets DL
    Light Sci Appl; 2019; 8():59. PubMed ID: 31263558
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High refractive index immersion liquid for superresolution 3D imaging using sapphire-based aplanatic numerical aperture increasing lens optics.
    Laskar JM; Shravan Kumar P; Herminghaus S; Daniels KE; Schröter M
    Appl Opt; 2016 Apr; 55(12):3165-9. PubMed ID: 27140083
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Object-dependent spatial resolution of the reflection-mode terahertz solid immersion microscopy.
    Zhelnov VA; Zaytsev KI; Kucheryavenko AS; Katyba GM; Dolganova IN; Ponomarev DS; Kurlov VN; Skorobogatiy M; Chernomyrdin NV
    Opt Express; 2021 Feb; 29(3):3553-3566. PubMed ID: 33770952
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High numerical aperture Fourier ptychography: principle, implementation and characterization.
    Ou X; Horstmeyer R; Zheng G; Yang C
    Opt Express; 2015 Feb; 23(3):3472-91. PubMed ID: 25836203
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of optical variables in immersion lens-based near-field optics.
    Kim WC; Yoon YJ; Choi H; Park NC; Park YP
    Opt Express; 2008 Sep; 16(18):13933-48. PubMed ID: 18773004
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of depth dependent spherical aberrations in 3D structured illumination microscopy.
    Arigovindan M; Sedat JW; Agard DA
    Opt Express; 2012 Mar; 20(6):6527-41. PubMed ID: 22418536
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Aberration characteristics of immersion lenses for LVSEM.
    Khursheed A
    Ultramicroscopy; 2002 Dec; 93(3-4):331-8. PubMed ID: 12492242
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reflective multi-immersion microscope objectives inspired by the Schmidt telescope.
    Voigt FF; Reuss AM; Naert T; Hildebrand S; Schaettin M; Hotz AL; Whitehead L; Bahl A; Neuhauss SCF; Roebroeck A; Stoeckli ET; Lienkamp SS; Aguzzi A; Helmchen F
    Nat Biotechnol; 2024 Jan; 42(1):65-71. PubMed ID: 36997681
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Aberration compensation in aplanatic solid immersion lens microscopy.
    Lu Y; Bifano T; Ünlü S; Goldberg B
    Opt Express; 2013 Nov; 21(23):28189-97. PubMed ID: 24514331
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Metalens with a Near-Unity Numerical Aperture.
    Paniagua-Domínguez R; Yu YF; Khaidarov E; Choi S; Leong V; Bakker RM; Liang X; Fu YH; Valuckas V; Krivitsky LA; Kuznetsov AI
    Nano Lett; 2018 Mar; 18(3):2124-2132. PubMed ID: 29485885
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A study on the realization of high resolution solid immersion lens-based near-field imaging optics by use of an annular aperture.
    Moon H; Yoon YJ; Kim WC; Park NC; Park KS; Park YP
    Opt Express; 2010 Aug; 18(16):17533-41. PubMed ID: 20721138
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of age, decentration, aberrations and pupil size on subjective image quality with concentric bifocal optics.
    Rio D; Woog K; Legras R
    Ophthalmic Physiol Opt; 2016 Jul; 36(4):411-20. PubMed ID: 27196105
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparing strategies for deep astigmatism-based single-molecule localization microscopy.
    Siemons M; Cloin BMC; Salas DM; Nijenhuis W; Katrukha EA; Kapitein LC
    Biomed Opt Express; 2020 Feb; 11(2):735-751. PubMed ID: 32133221
    [TBL] [Abstract][Full Text] [Related]  

  • 37. On-eye measurement of optical performance of rigid gas permeable contact lenses based on ocular and corneal aberrometry.
    Dorronsoro C; Barbero S; Llorente L; Marcos S
    Optom Vis Sci; 2003 Feb; 80(2):115-25. PubMed ID: 12597326
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Generalised adaptive optics method for high-NA aberration-free refocusing in refractive-index-mismatched media.
    Cui J; Antonello J; Kirkpatrick AR; Salter PS; Booth MJ
    Opt Express; 2022 Mar; 30(7):11809-11824. PubMed ID: 35473116
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Contribution of the gradient refractive index and shape to the crystalline lens spherical aberration and astigmatism.
    Birkenfeld J; de Castro A; Ortiz S; Pascual D; Marcos S
    Vision Res; 2013 Jun; 86():27-34. PubMed ID: 23597582
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Design for an aberration corrected scanning electron microscope using miniature electron mirrors.
    Dohi H; Kruit P
    Ultramicroscopy; 2018 Jun; 189():1-23. PubMed ID: 29574382
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.