These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 33577539)

  • 1. Inverse design of multi-band and wideband waveguide crossings.
    Yi D; Zhou W; Zhang Y; Tsang HK
    Opt Lett; 2021 Feb; 46(4):884-887. PubMed ID: 33577539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inverse-designed low-loss and wideband polarization-insensitive silicon waveguide crossing.
    Yu Z; Feng A; Xi X; Sun X
    Opt Lett; 2019 Jan; 44(1):77-80. PubMed ID: 30645552
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultra-compact X-shaped waveguide crossings with flexible angles based on inverse design.
    Dong Z; Qiu J; Chen Y; Liu C; Guo H; Zhang W; He Z; Wu J
    Opt Express; 2021 Jun; 29(13):19715-19726. PubMed ID: 34266076
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High performance ultra-compact SOI waveguide crossing.
    Han HL; Li H; Zhang XP; Liu A; Lin TY; Chen Z; Lv HB; Lu MH; Liu XP; Chen YF
    Opt Express; 2018 Oct; 26(20):25602-25610. PubMed ID: 30469659
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultralow-loss waveguide crossing for photonic integrated circuits by using inverted tapers.
    Han L; Ruan X; Tang W; Chu T
    Opt Express; 2022 Feb; 30(5):6738-6745. PubMed ID: 35299452
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inverse-designed ultra-compact star-crossings based on PhC-like subwavelength structures for optical intercross connect.
    Lu L; Zhang M; Zhou F; Chang W; Tang J; Li D; Ren X; Pan Z; Cheng M; Liu D
    Opt Express; 2017 Jul; 25(15):18355-18364. PubMed ID: 28789322
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tri-layer silicon nitride-on-silicon photonic platform for ultra-low-loss crossings and interlayer transitions.
    Sacher WD; Mikkelsen JC; Dumais P; Jiang J; Goodwill D; Luo X; Huang Y; Yang Y; Bois A; Lo PG; Bernier E; Poon JKS
    Opt Express; 2017 Dec; 25(25):30862-30875. PubMed ID: 29245766
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Silicon nitride waveguide devices based on gradient-index lenses implemented by subwavelength silicon grating metamaterials.
    Badri SH; Gilarlue MM
    Appl Opt; 2020 Jun; 59(17):5269-5275. PubMed ID: 32543549
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and resonator-assisted characterization of high-performance lithium niobate waveguide crossings.
    Chen Y; Zhang K; Feng H; Sun W; Wang C
    Opt Lett; 2023 May; 48(9):2218-2221. PubMed ID: 37126238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low-loss, low-crosstalk waveguide crossing for scalable integrated silicon photonics applications.
    Johnson M; Thompson MG; Sahin D
    Opt Express; 2020 Apr; 28(9):12498-12507. PubMed ID: 32403746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tri-layer gradient and polarization-selective vertical couplers for interlayer transition.
    Bai N; Zhu X; Zhu Y; Hong W; Sun X
    Opt Express; 2020 Jul; 28(15):23048-23059. PubMed ID: 32752555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and Simulation Investigation of Si
    Koompai N; Chaisakul P; Limsuwan P; Le Roux X; Vivien L; Marris-Morini D
    Sensors (Basel); 2021 Apr; 21(7):. PubMed ID: 33916817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultra-low crosstalk, CMOS compatible waveguide crossings for densely integrated photonic interconnection networks.
    Jones AM; DeRose CT; Lentine AL; Trotter DC; Starbuck AL; Norwood RA
    Opt Express; 2013 May; 21(10):12002-13. PubMed ID: 23736422
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultra-compact high efficiency and low crosstalk optical interconnection structures based on inverse designed nanophotonic elements.
    Li Z; Li G; Huang J; Zhang Z; Yang J; Yang C; Qian Y; Xu W; Huang H
    Sci Rep; 2020 Jul; 10(1):11993. PubMed ID: 32686746
    [TBL] [Abstract][Full Text] [Related]  

  • 15. State-of-the-Art and Perspectives on Silicon Waveguide Crossings: A Review.
    Wu S; Mu X; Cheng L; Mao S; Fu HY
    Micromachines (Basel); 2020 Mar; 11(3):. PubMed ID: 32245136
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multimode waveguide crossing based on a square Maxwell's fisheye lens.
    Badri SH; Rasooli Saghai H; Soofi H
    Appl Opt; 2019 Jun; 58(17):4647-4653. PubMed ID: 31251284
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tailorable dual-wavelength-band coupling in a transverse-electric-mode focusing subwavelength grating coupler.
    Zhou W; Cheng Z; Sun X; Tsang HK
    Opt Lett; 2018 Jun; 43(12):2985-2988. PubMed ID: 29905740
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multimode waveguide crossing with ultralow loss and low imbalance.
    Wu B; Yu Y; Zhang X
    Opt Express; 2020 May; 28(10):14705-14711. PubMed ID: 32403506
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultralow loss single layer submicron silicon waveguide crossing for SOI optical interconnect.
    Ma Y; Zhang Y; Yang S; Novack A; Ding R; Lim AE; Lo GQ; Baehr-Jones T; Hochberg M
    Opt Express; 2013 Dec; 21(24):29374-82. PubMed ID: 24514491
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultracompact photonic-waveguide circuits in Si-pillar photonic-crystal structures for integrated nanophotonic switches.
    Tokushima M; Olmos JJ; Kitayama K
    J Nanosci Nanotechnol; 2010 Mar; 10(3):1626-34. PubMed ID: 20355549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.