These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 33577540)

  • 1. High-throughput screening of a high-Q mid-infrared Tamm emitter by material informatics.
    Xi W; Liu Y; Song J; Hu R; Luo X
    Opt Lett; 2021 Feb; 46(4):888-891. PubMed ID: 33577540
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tunable narrowband mid-infrared thermal emitter with a bilayer cavity enhanced Tamm plasmon.
    Zhu H; Luo H; Li Q; Zhao D; Cai L; Du K; Xu Z; Ghosh P; Qiu M
    Opt Lett; 2018 Nov; 43(21):5230-5233. PubMed ID: 30382974
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST.
    Du KK; Li Q; Lyu YB; Ding JC; Lu Y; Cheng ZY; Qiu M
    Light Sci Appl; 2017 Jan; 6(1):e16194. PubMed ID: 30167194
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tunable Narrowband Silicon-Based Thermal Emitter with Excellent High-Temperature Stability Fabricated by Lithography-Free Methods.
    Hou G; Wang Q; Zhu Y; Lu Z; Xu J; Chen K
    Nanomaterials (Basel); 2021 Jul; 11(7):. PubMed ID: 34361200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-Q mid-infrared thermal emitters operating with high power-utilization efficiency.
    Inoue T; De Zoysa M; Asano T; Noda S
    Opt Express; 2016 Jun; 24(13):15101-9. PubMed ID: 27410661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Q all-dielectric thermal emitters for mid-infrared gas-sensing applications.
    Ali MO; Tait N; Gupta S
    J Opt Soc Am A Opt Image Sci Vis; 2018 Jan; 35(1):119-124. PubMed ID: 29328100
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-performance narrowband thermal emitter based on aperiodic Tamm plasmon structures assisted by inverse design.
    Qiu Q; Zhou D; Zhang J; Tan C; Xu Q; Zhang Z; Wen Z; Sun Y; Dai N; Hao J
    Opt Lett; 2023 Nov; 48(22):6000-6003. PubMed ID: 37966773
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tunable mid-infrared selective emitter based on inverse design metasurface for infrared stealth with thermal management.
    Jiang X; Zhang Z; Ma H; Du T; Luo M; Liu D; Yang J
    Opt Express; 2022 May; 30(11):18250-18263. PubMed ID: 36221630
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Near-infrared-to-visible highly selective thermal emitters based on an intrinsic semiconductor.
    Asano T; Suemitsu M; Hashimoto K; De Zoysa M; Shibahara T; Tsutsumi T; Noda S
    Sci Adv; 2016 Dec; 2(12):e1600499. PubMed ID: 28028532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Silicon photonic crystal thermal emitter at near-infrared wavelengths.
    O'Regan BJ; Wang Y; Krauss TF
    Sci Rep; 2015 Aug; 5():13415. PubMed ID: 26293111
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultraviolet to Mid-Infrared Emissivity Control by Mechanically Reconfigurable Graphene.
    Krishna A; Kim JM; Leem J; Wang MC; Nam S; Lee J
    Nano Lett; 2019 Aug; 19(8):5086-5092. PubMed ID: 31251631
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Narrowband mid-infrared thermal emitters based on the Fabry-Perot type of bound states in the continuum.
    Li X; Maqbool E; Han Z
    Opt Express; 2023 Jun; 31(12):20338-20344. PubMed ID: 37381430
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultranarrow and Wavelength-Scalable Thermal Emitters Driven by High-Order Antiferromagnetic Resonances in Dielectric Nanogratings.
    Liu M; Zhao C
    ACS Appl Mater Interfaces; 2021 Jun; 13(21):25306-25315. PubMed ID: 34014072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly Selective CMOS-Compatible Mid-Infrared Thermal Emitter/Detector Slab Design Using Optical Tamm-States.
    Pühringer G; Jakoby B
    Materials (Basel); 2019 Mar; 12(6):. PubMed ID: 30897809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of Different Metals on the Performance of Slab Tamm Plasmon Resonators.
    Pühringer G; Consani C; Jakoby B
    Sensors (Basel); 2020 Nov; 20(23):. PubMed ID: 33260503
    [TBL] [Abstract][Full Text] [Related]  

  • 16. General deep learning framework for emissivity engineering.
    Yu S; Zhou P; Xi W; Chen Z; Deng Y; Luo X; Li W; Shiomi J; Hu R
    Light Sci Appl; 2023 Dec; 12(1):291. PubMed ID: 38052800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective Properties of Mid-Infrared Tamm Phonon-Polaritons Emitter with Silicon Carbide-Based Structures.
    Gong C; Zheng G
    Micromachines (Basel); 2022 Jun; 13(6):. PubMed ID: 35744534
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wavelength-tunable mid-infrared thermal emitters with a non-volatile phase changing material.
    Du K; Cai L; Luo H; Lu Y; Tian J; Qu Y; Ghosh P; Lyu Y; Cheng Z; Qiu M; Li Q
    Nanoscale; 2018 Mar; 10(9):4415-4420. PubMed ID: 29451573
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multifunctional emitter based on inverse design for infrared stealth, thermal imaging and radiative cooling.
    Nong J; Li N; Jiang X; Wei X; Zhang Y; Zhao K; Xian J; Zhang Z; Yu Y; Zhang Z; Chen H; Yang J
    Opt Express; 2024 Jan; 32(3):3379-3393. PubMed ID: 38297560
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polarized thermal radiation by layer-by-layer metallic emitters with sub-wavelength grating.
    Lee JH; Leung W; Kim TG; Constant K; Ho KM
    Opt Express; 2008 Jun; 16(12):8742-7. PubMed ID: 18545587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.