These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 33577570)

  • 1. Brownian dynamics simulation of protofilament relaxation during rapid freezing.
    Ulyanov EV; Vinogradov DS; McIntosh JR; Gudimchuk NB
    PLoS One; 2021; 16(2):e0247022. PubMed ID: 33577570
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural differences between yeast and mammalian microtubules revealed by cryo-EM.
    Howes SC; Geyer EA; LaFrance B; Zhang R; Kellogg EH; Westermann S; Rice LM; Nogales E
    J Cell Biol; 2017 Sep; 216(9):2669-2677. PubMed ID: 28652389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical properties of tubulin intra- and inter-dimer interfaces and their implications for microtubule dynamic instability.
    Fedorov VA; Orekhov PS; Kholina EG; Zhmurov AA; Ataullakhanov FI; Kovalenko IB; Gudimchuk NB
    PLoS Comput Biol; 2019 Aug; 15(8):e1007327. PubMed ID: 31469822
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms of microtubule dynamics and force generation examined with computational modeling and electron cryotomography.
    Gudimchuk NB; Ulyanov EV; O'Toole E; Page CL; Vinogradov DS; Morgan G; Li G; Moore JK; Szczesna E; Roll-Mecak A; Ataullakhanov FI; Richard McIntosh J
    Nat Commun; 2020 Jul; 11(1):3765. PubMed ID: 32724196
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural transitions in the GTP cap visualized by cryo-electron microscopy of catalytically inactive microtubules.
    LaFrance BJ; Roostalu J; Henkin G; Greber BJ; Zhang R; Normanno D; McCollum CO; Surrey T; Nogales E
    Proc Natl Acad Sci U S A; 2022 Jan; 119(2):. PubMed ID: 34996871
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lattice defects in microtubules: protofilament numbers vary within individual microtubules.
    Chrétien D; Metoz F; Verde F; Karsenti E; Wade RH
    J Cell Biol; 1992 Jun; 117(5):1031-40. PubMed ID: 1577866
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrastructural Analysis of Microtubule Ends.
    Richard McIntosh J; O'Toole E; Page C; Morgan G
    Methods Mol Biol; 2020; 2101():191-209. PubMed ID: 31879906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new look at the microtubule binding patterns of dimeric kinesins.
    Hoenger A; Thormählen M; Diaz-Avalos R; Doerhoefer M; Goldie KN; Müller J; Mandelkow E
    J Mol Biol; 2000 Apr; 297(5):1087-103. PubMed ID: 10764575
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microtubules switch occasionally into unfavorable configurations during elongation.
    Chrétien D; Fuller SD
    J Mol Biol; 2000 May; 298(4):663-76. PubMed ID: 10788328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Near-atomic cryo-EM structure of PRC1 bound to the microtubule.
    Kellogg EH; Howes S; Ti SC; Ramírez-Aportela E; Kapoor TM; Chacón P; Nogales E
    Proc Natl Acad Sci U S A; 2016 Aug; 113(34):9430-9. PubMed ID: 27493215
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Luminal localization of α-tubulin K40 acetylation by cryo-EM analysis of fab-labeled microtubules.
    Soppina V; Herbstman JF; Skiniotis G; Verhey KJ
    PLoS One; 2012; 7(10):e48204. PubMed ID: 23110214
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure and Dynamics of Single-isoform Recombinant Neuronal Human Tubulin.
    Vemu A; Atherton J; Spector JO; Szyk A; Moores CA; Roll-Mecak A
    J Biol Chem; 2016 Jun; 291(25):12907-15. PubMed ID: 27129203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cryo-EM structure of VASH1-SVBP bound to microtubules.
    Li F; Li Y; Ye X; Gao H; Shi Z; Luo X; Rice LM; Yu H
    Elife; 2020 Aug; 9():. PubMed ID: 32773040
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cryoelectron microscopy applications in the study of tubulin structure, microtubule architecture, dynamics and assemblies, and interaction of microtubules with motors.
    Downing KH; Nogales E
    Methods Enzymol; 2010; 483():121-42. PubMed ID: 20888472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tubulin isoform composition tunes microtubule dynamics.
    Vemu A; Atherton J; Spector JO; Moores CA; Roll-Mecak A
    Mol Biol Cell; 2017 Dec; 28(25):3564-3572. PubMed ID: 29021343
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformational changes in tubulin in GMPCPP and GDP-taxol microtubules observed by cryoelectron microscopy.
    Yajima H; Ogura T; Nitta R; Okada Y; Sato C; Hirokawa N
    J Cell Biol; 2012 Aug; 198(3):315-22. PubMed ID: 22851320
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microtubule dynamics and microtubule caps: a time-resolved cryo-electron microscopy study.
    Mandelkow EM; Mandelkow E; Milligan RA
    J Cell Biol; 1991 Sep; 114(5):977-91. PubMed ID: 1874792
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A microtubule bestiary: structural diversity in tubulin polymers.
    Chaaban S; Brouhard GJ
    Mol Biol Cell; 2017 Nov; 28(22):2924-2931. PubMed ID: 29084910
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A structural analysis of the interaction between ncd tail and tubulin protofilaments.
    Wendt T; Karabay A; Krebs A; Gross H; Walker R; Hoenger A
    J Mol Biol; 2003 Oct; 333(3):541-52. PubMed ID: 14556743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. At least one of the protofilaments in flagellar microtubules is not composed of tubulin.
    Nojima D; Linck RW; Egelman EH
    Curr Biol; 1995 Feb; 5(2):158-67. PubMed ID: 7743179
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.