These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 33577734)

  • 21. Time-dependent density functional theory.
    Marques MA; Gross EK
    Annu Rev Phys Chem; 2004; 55():427-55. PubMed ID: 15117259
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Linear-Response Time-Dependent Density Functional Theory with Stochastic Range-Separated Hybrids.
    Zhang X; Lu G; Baer R; Rabani E; Neuhauser D
    J Chem Theory Comput; 2020 Feb; 16(2):1064-1072. PubMed ID: 31899638
    [TBL] [Abstract][Full Text] [Related]  

  • 23. First-principles method of propagation of tightly bound excitons: verifying the exciton band structure of LiF with inelastic x-ray scattering.
    Lee CC; Chen XM; Gan Y; Yeh CL; Hsueh HC; Abbamonte P; Ku W
    Phys Rev Lett; 2013 Oct; 111(15):157401. PubMed ID: 24160627
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Boron fullerenes, B
    Chopra S
    J Mol Graph Model; 2018 Sep; 84():90-95. PubMed ID: 29940505
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Time-dependent density functional theory of open quantum systems in the linear-response regime.
    Tempel DG; Watson MA; Olivares-Amaya R; Aspuru-Guzik A
    J Chem Phys; 2011 Feb; 134(7):074116. PubMed ID: 21341837
    [TBL] [Abstract][Full Text] [Related]  

  • 26. First-Principles Study of the Optical Dipole Trap for Two-Dimensional Excitons in Graphane.
    Katow H; Akashi R; Miyamoto Y; Tsuneyuki S
    Phys Rev Lett; 2022 Jul; 129(4):047401. PubMed ID: 35938993
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Momentum-resolved TDDFT algorithm in atomic basis for real time tracking of electronic excitation.
    Lian C; Hu SQ; Guan MX; Meng S
    J Chem Phys; 2018 Oct; 149(15):154104. PubMed ID: 30342439
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Exciton-Scattering-Induced Dephasing in Two-Dimensional Semiconductors.
    Katsch F; Selig M; Knorr A
    Phys Rev Lett; 2020 Jun; 124(25):257402. PubMed ID: 32639791
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Propagation of maximally localized Wannier functions in real-time TDDFT.
    Yost DC; Yao Y; Kanai Y
    J Chem Phys; 2019 May; 150(19):194113. PubMed ID: 31117778
    [TBL] [Abstract][Full Text] [Related]  

  • 30. LCAO-TDDFT-
    Lyon K; Preciado-Rivas MR; Zamora-Ledezma C; Despoja V; Mowbray DJ
    J Phys Condens Matter; 2020 Jul; 32(41):. PubMed ID: 32503015
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bound excitons in time-dependent density-functional theory: optical and energy-loss spectra.
    Marini A; Del Sole R; Rubio A
    Phys Rev Lett; 2003 Dec; 91(25):256402. PubMed ID: 14754131
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regarding the validity of the time-dependent Kohn-Sham approach for electron-nuclear dynamics via trajectory surface hopping.
    Fischer SA; Habenicht BF; Madrid AB; Duncan WR; Prezhdo OV
    J Chem Phys; 2011 Jan; 134(2):024102. PubMed ID: 21241075
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Stochastic scattering theory for excitation-induced dephasing: Time-dependent nonlinear coherent exciton lineshapes.
    Srimath Kandada AR; Li H; Thouin F; Bittner ER; Silva C
    J Chem Phys; 2020 Oct; 153(16):164706. PubMed ID: 33138398
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Calculation of excitation energies of open-shell molecules with spatially degenerate ground states. I. Transformed reference via an intermediate configuration Kohn-Sham density-functional theory and applications to d1 and d2 systems with octahedral and tetrahedral symmetries.
    Seth M; Ziegler T
    J Chem Phys; 2005 Oct; 123(14):144105. PubMed ID: 16238372
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Calculation of excitation energies of open-shell molecules with spatially degenerate ground states. II. Transformed reference via intermediate configuration Kohn-Sham time dependent density functional theory oscillator strengths and magnetic circular dichroism C terms.
    Seth M; Ziegler T
    J Chem Phys; 2006 Apr; 124(14):144105. PubMed ID: 16626178
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Peak-shifting in real-time time-dependent density functional theory.
    Provorse MR; Habenicht BF; Isborn CM
    J Chem Theory Comput; 2015 Oct; 11(10):4791-802. PubMed ID: 26574268
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quasi-Low-Dimensional Electron Gas with One Populated Band as a Testing Ground for Time-Dependent Density-Functional Theory of Mesoscopic Systems.
    Nazarov VU
    Phys Rev Lett; 2017 Jun; 118(23):236802. PubMed ID: 28644647
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Towards time-dependent current-density-functional theory in the non-linear regime.
    Escartín JM; Vincendon M; Romaniello P; Dinh PM; Reinhard PG; Suraud E
    J Chem Phys; 2015 Feb; 142(8):084118. PubMed ID: 25725723
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Theoretical Study of the Charge Transfer Exciton Binding Energy in Semiconductor Materials for Polymer:Fullerene-Based Bulk Heterojunction Solar Cells.
    Izquierdo MA; Broer R; Havenith RWA
    J Phys Chem A; 2019 Feb; 123(6):1233-1242. PubMed ID: 30676720
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Self-consistent predictor/corrector algorithms for stable and efficient integration of the time-dependent Kohn-Sham equation.
    Zhu Y; Herbert JM
    J Chem Phys; 2018 Jan; 148(4):044117. PubMed ID: 29390834
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.