These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 33577748)

  • 21. Rhythmogenesis in axial locomotor networks: an interspecies comparison.
    Ryczko D; Dubuc R; Cabelguen JM
    Prog Brain Res; 2010; 187():189-211. PubMed ID: 21111209
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A critical role for Piezo2 channels in the mechanotransduction of mouse proprioceptive neurons.
    Florez-Paz D; Bali KK; Kuner R; Gomis A
    Sci Rep; 2016 May; 6():25923. PubMed ID: 27184818
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Central processing of leg proprioception in
    Agrawal S; Dickinson ES; Sustar A; Gurung P; Shepherd D; Truman JW; Tuthill JC
    Elife; 2020 Dec; 9():. PubMed ID: 33263281
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Corollary discharge enables proprioception from lateral line sensory feedback.
    Skandalis DA; Lunsford ET; Liao JC
    PLoS Biol; 2021 Oct; 19(10):e3001420. PubMed ID: 34634044
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Some principles of organization of spinal neurons underlying locomotion in zebrafish and their implications.
    Fetcho JR; McLean DL
    Ann N Y Acad Sci; 2010 Jun; 1198():94-104. PubMed ID: 20536924
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular mechanisms underlying monosynaptic sensory-motor circuit development in the spinal cord.
    Imai F; Yoshida Y
    Dev Dyn; 2018 Apr; 247(4):581-587. PubMed ID: 29226492
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Frequency control of motor patterning by negative sensory feedback.
    Ausborn J; Stein W; Wolf H
    J Neurosci; 2007 Aug; 27(35):9319-28. PubMed ID: 17728446
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Delineating the Diversity of Spinal Interneurons in Locomotor Circuits.
    Gosgnach S; Bikoff JB; Dougherty KJ; El Manira A; Lanuza GM; Zhang Y
    J Neurosci; 2017 Nov; 37(45):10835-10841. PubMed ID: 29118212
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Neuronal generation of the leech swimming movement.
    Stent GS; Kristan WB; Friesen WO; Ort CA; Poon M; Calabrese RL
    Science; 1978 Jun; 200(4348):1348-57. PubMed ID: 663615
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The interaction of positive and negative sensory feedback loops in dynamic regulation of a motor pattern.
    Ausborn J; Wolf H; Stein W
    J Comput Neurosci; 2009 Oct; 27(2):245-57. PubMed ID: 19291377
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Intraspinal Sensory Neurons Provide Powerful Inhibition to Motor Circuits Ensuring Postural Control during Locomotion.
    Hubbard JM; Böhm UL; Prendergast A; Tseng PB; Newman M; Stokes C; Wyart C
    Curr Biol; 2016 Nov; 26(21):2841-2853. PubMed ID: 27720623
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Distinct subtypes of proprioceptive dorsal root ganglion neurons regulate adaptive proprioception in mice.
    Wu H; Petitpré C; Fontanet P; Sharma A; Bellardita C; Quadros RM; Jannig PR; Wang Y; Heimel JA; Cheung KKY; Wanderoy S; Xuan Y; Meletis K; Ruas J; Gurumurthy CB; Kiehn O; Hadjab S; Lallemend F
    Nat Commun; 2021 Feb; 12(1):1026. PubMed ID: 33589589
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanosensory neurons control the timing of spinal microcircuit selection during locomotion.
    Knafo S; Fidelin K; Prendergast A; Tseng PB; Parrin A; Dickey C; Böhm UL; Figueiredo SN; Thouvenin O; Pascal-Moussellard H; Wyart C
    Elife; 2017 Jun; 6():. PubMed ID: 28623664
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The CPGs for Limbed Locomotion-Facts and Fiction.
    Grillner S; Kozlov A
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34070932
    [TBL] [Abstract][Full Text] [Related]  

  • 35. RORβ Spinal Interneurons Gate Sensory Transmission during Locomotion to Secure a Fluid Walking Gait.
    Koch SC; Del Barrio MG; Dalet A; Gatto G; Günther T; Zhang J; Seidler B; Saur D; Schüle R; Goulding M
    Neuron; 2017 Dec; 96(6):1419-1431.e5. PubMed ID: 29224725
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Spinal V1 neurons inhibit motor targets locally and sensory targets distally.
    Sengupta M; Daliparthi V; Roussel Y; Bui TV; Bagnall MW
    Curr Biol; 2021 Sep; 31(17):3820-3833.e4. PubMed ID: 34289387
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Orderly compartmental mapping of premotor inhibition in the developing zebrafish spinal cord.
    Kishore S; Cadoff EB; Agha MA; McLean DL
    Science; 2020 Oct; 370(6515):431-436. PubMed ID: 33093104
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Flexor reflex afferents reset the step cycle during fictive locomotion in the cat.
    Schomburg ED; Petersen N; Barajon I; Hultborn H
    Exp Brain Res; 1998 Oct; 122(3):339-50. PubMed ID: 9808307
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Developmental switch in the function of inhibitory commissural V0d interneurons in zebrafish.
    Picton LD; Björnfors ER; Fontanel P; Pallucchi I; Bertuzzi M; El Manira A
    Curr Biol; 2022 Aug; 32(16):3515-3528.e4. PubMed ID: 35853456
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transition of pattern generation: the phenomenon of post-scratching locomotion.
    Trejo A; Tapia JA; De la Torre Valdovinos B; Huidobro N; Flores G; Flores-Hernandez J; Flores A; Manjarrez E
    Neuroscience; 2015 Mar; 288():156-66. PubMed ID: 25556832
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.