These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
264 related articles for article (PubMed ID: 33577749)
21. Chemoproteomics and Chemical Probes for Target Discovery. Drewes G; Knapp S Trends Biotechnol; 2018 Dec; 36(12):1275-1286. PubMed ID: 30017093 [TBL] [Abstract][Full Text] [Related]
22. Identification of protein binding partners of small molecules using label-free methods. Saxena C Expert Opin Drug Discov; 2016 Oct; 11(10):1017-25. PubMed ID: 27554241 [TBL] [Abstract][Full Text] [Related]
23. The future of phenotypic drug discovery. Berg EL Cell Chem Biol; 2021 Mar; 28(3):424-430. PubMed ID: 33529582 [TBL] [Abstract][Full Text] [Related]
24. Application of chemoproteomics to drug discovery: identification of a clinical candidate targeting hsp90. Fadden P; Huang KH; Veal JM; Steed PM; Barabasz AF; Foley B; Hu M; Partridge JM; Rice J; Scott A; Dubois LG; Freed TA; Silinski MA; Barta TE; Hughes PF; Ommen A; Ma W; Smith ED; Spangenberg AW; Eaves J; Hanson GJ; Hinkley L; Jenks M; Lewis M; Otto J; Pronk GJ; Verleysen K; Haystead TA; Hall SE Chem Biol; 2010 Jul; 17(7):686-94. PubMed ID: 20659681 [TBL] [Abstract][Full Text] [Related]
25. An isothermal shift assay for proteome scale drug-target identification. Ball KA; Webb KJ; Coleman SJ; Cozzolino KA; Jacobsen J; Jones KR; Stowell MHB; Old WM Commun Biol; 2020 Feb; 3(1):75. PubMed ID: 32060372 [TBL] [Abstract][Full Text] [Related]
26. 'Design, synthesis, and strategic use of small chemical probes toward identification of novel targets for drug development'. Castaldi MP; Hendricks JA; Zhang AX Curr Opin Chem Biol; 2020 Jun; 56():91-97. PubMed ID: 32375076 [TBL] [Abstract][Full Text] [Related]
27. Target identification of small molecules based on chemical biology approaches. Futamura Y; Muroi M; Osada H Mol Biosyst; 2013 May; 9(5):897-914. PubMed ID: 23354001 [TBL] [Abstract][Full Text] [Related]
28. Chemical proteomics to identify molecular targets of small compounds. Sun B; He QY Curr Mol Med; 2013 Aug; 13(7):1175-91. PubMed ID: 23826922 [TBL] [Abstract][Full Text] [Related]
29. Photoaffinity labelling strategies for mapping the small molecule-protein interactome. Burton NR; Kim P; Backus KM Org Biomol Chem; 2021 Sep; 19(36):7792-7809. PubMed ID: 34549230 [TBL] [Abstract][Full Text] [Related]
30. The Convergence of Stem Cell Technologies and Phenotypic Drug Discovery. Friese A; Ursu A; Hochheimer A; Schöler HR; Waldmann H; Bruder JM Cell Chem Biol; 2019 Aug; 26(8):1050-1066. PubMed ID: 31231030 [TBL] [Abstract][Full Text] [Related]
31. Integrated phenotypic and activity-based profiling links Ces3 to obesity and diabetes. Dominguez E; Galmozzi A; Chang JW; Hsu KL; Pawlak J; Li W; Godio C; Thomas J; Partida D; Niessen S; O'Brien PE; Russell AP; Watt MJ; Nomura DK; Cravatt BF; Saez E Nat Chem Biol; 2014 Feb; 10(2):113-21. PubMed ID: 24362705 [TBL] [Abstract][Full Text] [Related]
32. Discovery of small-molecule modulator of heterotrimeric G Kawamura T; Futamura Y; Shang E; Muroi M; Janning P; Ueno M; Wilke J; Takeda S; Kondoh Y; Ziegler S; Watanabe N; Waldmann H; Osada H Biosci Biotechnol Biochem; 2020 Dec; 84(12):2484-2490. PubMed ID: 32867616 [TBL] [Abstract][Full Text] [Related]
33. How chemoproteomics can enable drug discovery and development. Moellering RE; Cravatt BF Chem Biol; 2012 Jan; 19(1):11-22. PubMed ID: 22284350 [TBL] [Abstract][Full Text] [Related]
34. Ligand and Target Discovery by Fragment-Based Screening in Human Cells. Parker CG; Galmozzi A; Wang Y; Correia BE; Sasaki K; Joslyn CM; Kim AS; Cavallaro CL; Lawrence RM; Johnson SR; Narvaiza I; Saez E; Cravatt BF Cell; 2017 Jan; 168(3):527-541.e29. PubMed ID: 28111073 [TBL] [Abstract][Full Text] [Related]
35. Chemical proteomics: terra incognita for novel drug target profiling. Huang F; Zhang B; Zhou S; Zhao X; Bian C; Wei Y Chin J Cancer; 2012 Nov; 31(11):507-18. PubMed ID: 22640626 [TBL] [Abstract][Full Text] [Related]
36. [The application of small molecule bioactive probes in the identification of cellular targets]. Zhang J; Zhou HC Yao Xue Xue Bao; 2012 Mar; 47(3):299-306. PubMed ID: 22645752 [TBL] [Abstract][Full Text] [Related]
37. Target identification of natural and traditional medicines with quantitative chemical proteomics approaches. Wang J; Gao L; Lee YM; Kalesh KA; Ong YS; Lim J; Jee JE; Sun H; Lee SS; Hua ZC; Lin Q Pharmacol Ther; 2016 Jun; 162():10-22. PubMed ID: 26808165 [TBL] [Abstract][Full Text] [Related]
38. Profiling technologies for the identification and characterization of small-molecule histone deacetylase inhibitors. Liao D Drug Discov Today Technol; 2015 Nov; 18():24-8. PubMed ID: 26723889 [TBL] [Abstract][Full Text] [Related]
39. A screening pattern recognition method finds new and divergent targets for drugs and natural products. Wassermann AM; Lounkine E; Urban L; Whitebread S; Chen S; Hughes K; Guo H; Kutlina E; Fekete A; Klumpp M; Glick M ACS Chem Biol; 2014 Jul; 9(7):1622-31. PubMed ID: 24802392 [TBL] [Abstract][Full Text] [Related]
40. [Recent advances in protein precipitation-based methods for drug-target screening]. Liu T; Qin WJ; Yang HJ Se Pu; 2024 Jul; 42(7):613-622. PubMed ID: 38966970 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]