BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

800 related articles for article (PubMed ID: 33577785)

  • 1. Proteogenomic and metabolomic characterization of human glioblastoma.
    Wang LB; Karpova A; Gritsenko MA; Kyle JE; Cao S; Li Y; Rykunov D; Colaprico A; Rothstein JH; Hong R; Stathias V; Cornwell M; Petralia F; Wu Y; Reva B; Krug K; Pugliese P; Kawaler E; Olsen LK; Liang WW; Song X; Dou Y; Wendl MC; Caravan W; Liu W; Cui Zhou D; Ji J; Tsai CF; Petyuk VA; Moon J; Ma W; Chu RK; Weitz KK; Moore RJ; Monroe ME; Zhao R; Yang X; Yoo S; Krek A; Demopoulos A; Zhu H; Wyczalkowski MA; McMichael JF; Henderson BL; Lindgren CM; Boekweg H; Lu S; Baral J; Yao L; Stratton KG; Bramer LM; Zink E; Couvillion SP; Bloodsworth KJ; Satpathy S; Sieh W; Boca SM; Schürer S; Chen F; Wiznerowicz M; Ketchum KA; Boja ES; Kinsinger CR; Robles AI; Hiltke T; Thiagarajan M; Nesvizhskii AI; Zhang B; Mani DR; Ceccarelli M; Chen XS; Cottingham SL; Li QK; Kim AH; Fenyö D; Ruggles KV; Rodriguez H; Mesri M; Payne SH; Resnick AC; Wang P; Smith RD; Iavarone A; Chheda MG; Barnholtz-Sloan JS; Rodland KD; Liu T; Ding L;
    Cancer Cell; 2021 Apr; 39(4):509-528.e20. PubMed ID: 33577785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrative multi-omics characterization reveals sex differences in glioblastoma.
    Jang B; Yoon D; Lee JY; Kim J; Hong J; Koo H; Sa JK
    Biol Sex Differ; 2024 Mar; 15(1):23. PubMed ID: 38491408
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comprehensive analysis of Reverse Phase Protein Array data reveals characteristic unique proteomic signatures for glioblastoma subtypes.
    Patil V; Mahalingam K
    Gene; 2019 Feb; 685():85-95. PubMed ID: 30401645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrated pharmaco-proteogenomics defines two subgroups in isocitrate dehydrogenase wild-type glioblastoma with prognostic and therapeutic opportunities.
    Oh S; Yeom J; Cho HJ; Kim JH; Yoon SJ; Kim H; Sa JK; Ju S; Lee H; Oh MJ; Lee W; Kwon Y; Li H; Choi S; Han JH; Chang JH; Choi E; Kim J; Her NG; Kim SH; Kang SG; Paek E; Nam DH; Lee C; Kim HS
    Nat Commun; 2020 Jul; 11(1):3288. PubMed ID: 32620753
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integration of RNA-Seq and proteomics data identifies glioblastoma multiforme surfaceome signature.
    Syafruddin SE; Nazarie WFWM; Moidu NA; Soon BH; Mohtar MA
    BMC Cancer; 2021 Jul; 21(1):850. PubMed ID: 34301218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteogenomics of glioblastoma associates molecular patterns with survival.
    Yanovich-Arad G; Ofek P; Yeini E; Mardamshina M; Danilevsky A; Shomron N; Grossman R; Satchi-Fainaro R; Geiger T
    Cell Rep; 2021 Mar; 34(9):108787. PubMed ID: 33657365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative Proteomics Reveals Fundamental Regulatory Differences in Oncogenic HRAS and Isocitrate Dehydrogenase (IDH1) Driven Astrocytoma.
    Doll S; Urisman A; Oses-Prieto JA; Arnott D; Burlingame AL
    Mol Cell Proteomics; 2017 Jan; 16(1):39-56. PubMed ID: 27834733
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative proteogenomic characterization of glioblastoma.
    Asif S; Fatima R; Krc R; Bennett J; Raza S
    CNS Oncol; 2019 Jun; 8(2):CNS37. PubMed ID: 31290679
    [No Abstract]   [Full Text] [Related]  

  • 9. Multi-Omics Data Integration and Mapping of Altered Kinases to Pathways Reveal Gonadotropin Hormone Signaling in Glioblastoma.
    Jayaram S; Gupta MK; Raju R; Gautam P; Sirdeshmukh R
    OMICS; 2016 Dec; 20(12):736-746. PubMed ID: 27930095
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrated Proteogenomics Uncover Mechanisms of Glioblastoma Evolution, Pointing to Novel Therapeutic Targets.
    Li J; Shih LK; Brat DJ
    Cancer Res; 2024 May; 84(9):1379-1381. PubMed ID: 38330148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative proteomic analysis of GnRH agonist treated GBM cell line LN229 revealed regulatory proteins inhibiting cancer cell proliferation.
    Tripathi PH; Akhtar J; Arora J; Saran RK; Mishra N; Polisetty RV; Sirdeshmukh R; Gautam P
    BMC Cancer; 2022 Feb; 22(1):133. PubMed ID: 35109816
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioinformatic analyses reveal a distinct Notch activation induced by STAT3 phosphorylation in the mesenchymal subtype of glioblastoma.
    Cheng W; Zhang C; Ren X; Jiang Y; Han S; Liu Y; Cai J; Li M; Wang K; Liu Y; Hu H; Li Q; Yang P; Bao Z; Wu A
    J Neurosurg; 2017 Jan; 126(1):249-259. PubMed ID: 26967788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteomic profiling of patient-derived glioblastoma xenografts identifies a subset with activated EGFR: implications for drug development.
    Brown KE; Chagoya G; Kwatra SG; Yen T; Keir ST; Cooter M; Hoadley KA; Rasheed A; Lipp ES; Mclendon R; Ali-Osman F; Bigner DD; Sampson JH; Kwatra MM
    J Neurochem; 2015 Jun; 133(5):730-8. PubMed ID: 25598002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thyroid receptor-interacting protein 13 and EGFR form a feedforward loop promoting glioblastoma growth.
    Hu L; Shen D; Liang D; Shi J; Song C; Jiang K; Menglin Ren ; Du S; Cheng W; Ma J; Li S; Bi X; Barr MP; Fang Z; Xu Q; Li W; Piao H; Meng S
    Cancer Lett; 2020 Nov; 493():156-166. PubMed ID: 32860853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel insights into vascularization patterns and angiogenic factors in glioblastoma subclasses.
    Conroy S; Wagemakers M; Walenkamp AM; Kruyt FA; den Dunnen WF
    J Neurooncol; 2017 Jan; 131(1):11-20. PubMed ID: 27633774
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combined expressional analysis, bioinformatics and targeted proteomics identify new potential therapeutic targets in glioblastoma stem cells.
    Stangeland B; Mughal AA; Grieg Z; Sandberg CJ; Joel M; Nygård S; Meling T; Murrell W; Vik Mo EO; Langmoen IA
    Oncotarget; 2015 Sep; 6(28):26192-215. PubMed ID: 26295306
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glioblastoma stem cells express non-canonical proteins and exclusive mesenchymal-like or non-mesenchymal-like protein signatures.
    Babačić H; Galardi S; Umer HM; Hellström M; Uhrbom L; Maturi N; Cardinali D; Pellegatta S; Michienzi A; Trevisi G; Mangiola A; Lehtiö J; Ciafrè SA; Pernemalm M
    Mol Oncol; 2023 Feb; 17(2):238-260. PubMed ID: 36495079
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Repression of Septin9 and Septin2 suppresses tumor growth of human glioblastoma cells.
    Xu D; Liu A; Wang X; Chen Y; Shen Y; Tan Z; Qiu M
    Cell Death Dis; 2018 May; 9(5):514. PubMed ID: 29724999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional genomics analyses of RNA-binding proteins reveal the splicing regulator SNRPB as an oncogenic candidate in glioblastoma.
    Correa BR; de Araujo PR; Qiao M; Burns SC; Chen C; Schlegel R; Agarwal S; Galante PA; Penalva LO
    Genome Biol; 2016 Jun; 17(1):125. PubMed ID: 27287018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surfaceome Proteomic of Glioblastoma Revealed Potential Targets for Immunotherapy.
    Rose M; Cardon T; Aboulouard S; Hajjaji N; Kobeissy F; Duhamel M; Fournier I; Salzet M
    Front Immunol; 2021; 12():746168. PubMed ID: 34646273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 40.