These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 33577950)

  • 21. Biogenesis and Homeostasis of Nicotinamide Adenine Dinucleotide Cofactor.
    Osterman A
    EcoSal Plus; 2009 Aug; 3(2):. PubMed ID: 26443758
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Assimilation of NAD(+) precursors in Candida glabrata.
    Ma B; Pan SJ; Zupancic ML; Cormack BP
    Mol Microbiol; 2007 Oct; 66(1):14-25. PubMed ID: 17725566
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Metabolic engineering of Escherichia coli for optimized biosynthesis of nicotinamide mononucleotide, a noncanonical redox cofactor.
    Black WB; Aspacio D; Bever D; King E; Zhang L; Li H
    Microb Cell Fact; 2020 Jul; 19(1):150. PubMed ID: 32718347
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Novel technologies combined with traditional metabolic engineering strategies facilitate the construction of shikimate-producing Escherichia coli.
    Gu P; Fan X; Liang Q; Qi Q; Li Q
    Microb Cell Fact; 2017 Sep; 16(1):167. PubMed ID: 28962609
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Metabolic evolution of two reducing equivalent-conserving pathways for high-yield succinate production in Escherichia coli.
    Zhu X; Tan Z; Xu H; Chen J; Tang J; Zhang X
    Metab Eng; 2014 Jul; 24():87-96. PubMed ID: 24831708
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Efficient one-step production of (S)-1-phenyl-1,2-ethanediol from (R)-enantiomer plus NAD(+)-NADPH in-situ regeneration using engineered Escherichia coli.
    Zhang R; Xu Y; Xiao R; Zhang B; Wang L
    Microb Cell Fact; 2012 Dec; 11():167. PubMed ID: 23272948
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optimization of hydrogenobyrinic acid biosynthesis in Escherichia coli using multi-level metabolic engineering strategies.
    Jiang P; Fang H; Zhao J; Dong H; Jin Z; Zhang D
    Microb Cell Fact; 2020 Jun; 19(1):118. PubMed ID: 32487216
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metabolic engineering for high yielding L(-)-carnitine production in Escherichia coli.
    Arense P; Bernal V; Charlier D; Iborra JL; Foulquié-Moreno MR; Cánovas M
    Microb Cell Fact; 2013 May; 12():56. PubMed ID: 23718679
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Host cell and expression engineering for development of an E. coli ketoreductase catalyst: enhancement of formate dehydrogenase activity for regeneration of NADH.
    Mädje K; Schmölzer K; Nidetzky B; Kratzer R
    Microb Cell Fact; 2012 Jan; 11():7. PubMed ID: 22236335
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Replacing Escherichia coli NAD-dependent glyceraldehyde 3-phosphate dehydrogenase (GAPDH) with a NADP-dependent enzyme from Clostridium acetobutylicum facilitates NADPH dependent pathways.
    Martínez I; Zhu J; Lin H; Bennett GN; San KY
    Metab Eng; 2008 Nov; 10(6):352-9. PubMed ID: 18852061
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lysate of engineered Escherichia coli supports high-level conversion of glucose to 2,3-butanediol.
    Kay JE; Jewett MC
    Metab Eng; 2015 Nov; 32():133-142. PubMed ID: 26428449
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Metabolic engineering of Escherichia coli for high-yield uridine production.
    Wu H; Li Y; Ma Q; Li Q; Jia Z; Yang B; Xu Q; Fan X; Zhang C; Chen N; Xie X
    Metab Eng; 2018 Sep; 49():248-256. PubMed ID: 30189293
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Metabolic engineering of Escherichia coli for efficient production of L-alanyl-L-glutamine.
    Zhu J; Yang W; Wang B; Liu Q; Zhong X; Gao Q; Liu J; Huang J; Lin B; Tao Y
    Microb Cell Fact; 2020 Jun; 19(1):129. PubMed ID: 32527330
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Combinatorial synthetic pathway fine-tuning and cofactor regeneration for metabolic engineering of Escherichia coli significantly improve production of D-glucaric acid.
    Su HH; Peng F; Ou XY; Zeng YJ; Zong MH; Lou WY
    N Biotechnol; 2020 Nov; 59():51-58. PubMed ID: 32693027
    [TBL] [Abstract][Full Text] [Related]  

  • 35. L-Cysteine Production in Escherichia coli Based on Rational Metabolic Engineering and Modular Strategy.
    Liu H; Fang G; Wu H; Li Z; Ye Q
    Biotechnol J; 2018 May; 13(5):e1700695. PubMed ID: 29405609
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Model-based metabolic engineering enables high yield itaconic acid production by Escherichia coli.
    Harder BJ; Bettenbrock K; Klamt S
    Metab Eng; 2016 Nov; 38():29-37. PubMed ID: 27269589
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Integrated strain engineering and bioprocessing strategies for high-level bio-based production of 3-hydroxyvalerate in Escherichia coli.
    Miscevic D; Mao JY; Kefale T; Abedi D; Huang CC; Moo-Young M; Chou CP
    Appl Microbiol Biotechnol; 2020 Jun; 104(12):5259-5272. PubMed ID: 32291486
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhancement of malate production through engineering of the periplasmic rTCA pathway in Escherichia coli.
    Guo L; Zhang F; Zhang C; Hu G; Gao C; Chen X; Liu L
    Biotechnol Bioeng; 2018 Jun; 115(6):1571-1580. PubMed ID: 29476618
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Complete Biosynthesis of Anthocyanins Using
    Jones JA; Vernacchio VR; Collins SM; Shirke AN; Xiu Y; Englaender JA; Cress BF; McCutcheon CC; Linhardt RJ; Gross RA; Koffas MAG
    mBio; 2017 Jun; 8(3):. PubMed ID: 28588129
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enforced ATP futile cycling increases specific productivity and yield of anaerobic lactate production in Escherichia coli.
    Hädicke O; Bettenbrock K; Klamt S
    Biotechnol Bioeng; 2015 Oct; 112(10):2195-9. PubMed ID: 25899755
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.