BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 33577967)

  • 1. The Ras/MAPK pathway is required for regenerative growth of wing discs in the black cutworm Agrotis ypsilon.
    Xu Y; Wei W; Lin G; Yan S; Zhang J; Shen J; Wang D
    Insect Biochem Mol Biol; 2021 Apr; 131():103552. PubMed ID: 33577967
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The wings of Bombyx mori develop from larval discs exhibiting an early differentiated state: a preliminary report.
    Kango-Singh M; Singh A; Gopinathan KP
    J Biosci; 2001 Jun; 26(2):167-77. PubMed ID: 11426053
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic interactions and cell behaviour in blistered mutants during proliferation and differentiation of the Drosophila wing.
    Roch F; Baonza A; Martín-Blanco E; García-Bellido A
    Development; 1998 May; 125(10):1823-32. PubMed ID: 9550715
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell death-induced regeneration in wing imaginal discs requires JNK signalling.
    Bergantiños C; Corominas M; Serras F
    Development; 2010 Apr; 137(7):1169-79. PubMed ID: 20215351
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reciprocal transplantation of wing discs between a wing deficient mutant (fl) and wild type of the silkworm, Bombyx mori.
    Hojyo T; Fujiwara H
    Dev Growth Differ; 1997 Oct; 39(5):599-606. PubMed ID: 9338595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MAP kinase subcellular localization controls both pattern and proliferation in the developing Drosophila wing.
    Marenda DR; Vrailas AD; Rodrigues AB; Cook S; Powers MA; Lorenzen JA; Perkins LA; Moses K
    Development; 2006 Jan; 133(1):43-51. PubMed ID: 16308331
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A scaleless wings mutant associated with tracheal system developmental deficiency in wing discs in the silkworm, Bombyx mori.
    Zhou Q; Tang S; Chen Y; Yi Y; Zhang Z; Shen G
    Int J Dev Biol; 2004 Dec; 48(10):1113-7. PubMed ID: 15602697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene expression following induction of regeneration in Drosophila wing imaginal discs. Expression profile of regenerating wing discs.
    Blanco E; Ruiz-Romero M; Beltran S; Bosch M; Punset A; Serras F; Corominas M
    BMC Dev Biol; 2010 Sep; 10():94. PubMed ID: 20813047
    [TBL] [Abstract][Full Text] [Related]  

  • 9. BmSd gene regulates the silkworm wing size by affecting the Hippo pathway.
    Yin J; Zhang J; Li T; Sun X; Qin S; Hou CX; Zhang GZ; Li MW
    Insect Sci; 2020 Aug; 27(4):655-664. PubMed ID: 31225693
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Morphological Murals: The Scaling and Allometry of Butterfly Wing Patterns.
    Palmer R; McKenna KZ; Nijhout HF
    Integr Comp Biol; 2019 Nov; 59(5):1281-1289. PubMed ID: 31290536
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of expression and chitin-binding activity of the wing disc cuticle protein BmWCP4 in the silkworm, Bombyx mori.
    Deng HM; Li Y; Zhang JL; Liu L; Feng QL
    Insect Sci; 2016 Dec; 23(6):782-790. PubMed ID: 25953667
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The embryonic transcription factor Zelda of Drosophila melanogaster is also expressed in larvae and may regulate developmentally important genes.
    Giannios P; Tsitilou SG
    Biochem Biophys Res Commun; 2013 Aug; 438(2):329-33. PubMed ID: 23891688
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Screening of larval/pupal P-element induced lethals on the second chromosome in Drosophila melanogaster: clonal analysis and morphology of imaginal discs.
    Roch F; Serras F; Cifuentes FJ; Corominas M; Alsina B; Amorós M; López-Varea A; Hernández R; Guerra D; Cavicchi S; Baguñá J; García-Bellido A
    Mol Gen Genet; 1998 Jan; 257(2):103-12. PubMed ID: 9491068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of Jun N-terminal Kinase (JNK) signaling in the wound healing and regeneration of a Drosophila melanogaster wing imaginal disc.
    Mattila J; Omelyanchuk L; Kyttälä S; Turunen H; Nokkala S
    Int J Dev Biol; 2005; 49(4):391-9. PubMed ID: 15968584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Drosophila Duox maturation factor is a key component of a positive feedback loop that sustains regeneration signaling.
    Khan SJ; Abidi SNF; Skinner A; Tian Y; Smith-Bolton RK
    PLoS Genet; 2017 Jul; 13(7):e1006937. PubMed ID: 28753614
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ROS-Induced JNK and p38 Signaling Is Required for Unpaired Cytokine Activation during Drosophila Regeneration.
    Santabárbara-Ruiz P; López-Santillán M; Martínez-Rodríguez I; Binagui-Casas A; Pérez L; Milán M; Corominas M; Serras F
    PLoS Genet; 2015 Oct; 11(10):e1005595. PubMed ID: 26496642
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 20-Hydroxyecdysone (20E) Primary Response Gene E93 Modulates 20E Signaling to Promote Bombyx Larval-Pupal Metamorphosis.
    Liu X; Dai F; Guo E; Li K; Ma L; Tian L; Cao Y; Zhang G; Palli SR; Li S
    J Biol Chem; 2015 Nov; 290(45):27370-27383. PubMed ID: 26378227
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Search for Genes Mediating the Growth-Promoting Function of TGFβ in the
    Hevia CF; López-Varea A; Esteban N; de Celis JF
    Genetics; 2017 May; 206(1):231-249. PubMed ID: 28315837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. STAT, Wingless, and Nurf-38 determine the accuracy of regeneration after radiation damage in Drosophila.
    Verghese S; Su TT
    PLoS Genet; 2017 Oct; 13(10):e1007055. PubMed ID: 29028797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The transcription factor optomotor-blind antagonizes Drosophila haltere growth by repressing decapentaplegic and hedgehog targets.
    Simon E; Guerrero I
    PLoS One; 2015; 10(3):e0121239. PubMed ID: 25793870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.